Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #17 Dec 18 2023 01:41:52
%S 1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,6,1,13,1,1,1,1,1,1,1,
%T 1,4,1,1,1,1,1,1,1,1,4,1,1,1,8,6,1,1,1,13,1,1,1,1,1,1,1,1,4,1,1,1,1,1,
%U 1,1,1,4,1,1,6,1,1,1,1,1,40,1,1,1,1,1,1,1,1,4,1,1,1,1,1,1,1,8,4,6,1,1,1,1,1
%N Sum of divisors of A336651(n) (odd part of n divided by its largest squarefree divisor).
%H Antti Karttunen, <a href="/A336649/b336649.txt">Table of n, a(n) for n = 1..65537</a>
%F Multiplicative with a(2^e) = 1, a(p^1) = 1 and a(p^e) = (p^e - 1)/(p-1) if e > 1.
%F a(n) = A000203(A336651(n)) = A335341(A000265(n)).
%F a(n) = A336652(n) / A204455(n).
%F Dirichlet g.f.: zeta(s-1) * zeta(s) * (1 - 1/(1-2^s+2^(2*s-1))) * Product_{p prime} (1 - 1/p^(s-1) + 1/p^(2*s-1)). - _Amiram Eldar_, Dec 18 2023
%t f[2, e_] := 1; f[p_, e_] := (p^e - 1)/(p-1); a[1] = 1; a[n_] := Times @@ (f @@@ FactorInteger[n]); Array[a, 100] (* _Amiram Eldar_, Dec 07 2020 *)
%o (PARI) A336649(n) = { my(f=factor(n)); prod(i=1, #f~, if((2==f[i,1])||(1==f[i,2]),1,(((f[i,1]^(f[i,2]))-1) / (f[i,1]-1)))); };
%o (PARI)
%o A000265(n) = (n>>valuation(n,2));
%o A335341(n) = if(1==n,n,sigma(n/factorback(factorint(n)[, 1])));
%o A336649(n) = A335341(A000265(n));
%Y Cf. A000203, A000265, A204455, A335341, A336651, A336652.
%K nonn,mult
%O 1,9
%A _Antti Karttunen_, Jul 30 2020