login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Expansion of e.g.f. -log(1 - x^2/2 * (exp(x) - 1)).
2

%I #15 Jan 22 2025 06:38:45

%S 0,0,0,3,6,10,105,651,2968,26496,265905,2203795,22830456,288661308,

%T 3476579197,44960585775,671394654960,10329701480416,164573071219233,

%U 2865785889662019,52647629639499280,1000194250108913580,20125846165307543661,426789766980101676943

%N Expansion of e.g.f. -log(1 - x^2/2 * (exp(x) - 1)).

%H Seiichi Manyama, <a href="/A368173/b368173.txt">Table of n, a(n) for n = 0..454</a>

%F a(n) = n! * Sum_{k=1..floor(n/3)} (k-1)! * Stirling2(n-2*k,k)/(2^k * (n-2*k)!).

%F a(0) = a(1) = a(2) = 0; a(n) = n*(n-1)/2 + Sum_{k=3..n-1} k*(k-1)/2 * binomial(n-1,k) * a(n-k). - _Seiichi Manyama_, Jan 22 2025

%o (PARI) a(n) = n!*sum(k=1, n\3, (k-1)!*stirling(n-2*k, k, 2)/(2^k*(n-2*k)!));

%Y Cf. A052858, A368174.

%Y Cf. A353998.

%K nonn,changed

%O 0,4

%A _Seiichi Manyama_, Dec 14 2023