Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Dec 12 2024 02:53:30
%S 3,3,11,27,162,380,7650,17325,81340,2518992,91128240,424947600,
%T 14078156400,33300661680,424624548348
%N Variant sequence generated by solving the order n x n linear problem [H]x = b where b is the unit vector and the sequence term is given by the denominator of the last unknown xn.
%F [H] is defined by hilbertWarrenA1[i,j]:=(1+j+i)/(-1+j+i) where numbering starts at 1.
%o (Maxima) HilbertWarren(fun, order) := ( Unity[i,j] := 1, A : genmatrix(fun, order, order), B : genmatrix(Unity, 1, order), App : invert(triangularize(A)), Xp : App . B, 1/Xp[order] ); findWarrenSequenceTerms(fun, a, b) := ( L : append(), for order: a next order+1 through b do L: cons(first(HilbertWarren(fun,order)), L), S : reverse(L) ); k : 15; hilbert[i,j] := 1/(i + j - 1); findWarrenSequenceTerms(hilbert, 1, k); hilbertA0[i,j] := (i + j + 0)/(i + j - 1); /* sum 1 */ findWarrenSequenceTerms(hilbertA0, 1, k); hilbertA1[i,j] := (i + j + 1)/(i + j - 1); /* sum 2: there are lots of these, increment numerator */ findWarrenSequenceTerms(hilbertA1, 1, k); hilbertD1[i,j] := (i - j + 1)/(i + j - 1); /* difference 1 */ findWarrenSequenceTerms(hilbertD1, 1, k); hilbertP1[i,j] := (i * j + 0)/(i + j - 1); /* product 1 */ findWarrenSequenceTerms(hilbertP1, 1, k); hilbertQ1[i,j] := (i / j)/(i + j - 1); /* quotient 1 */ findWarrenSequenceTerms(hilbertQ1, 1, k);
%K eigen,frac,hard,nonn
%O 1,1
%A L. Van Warren (van(AT)wdv.com), Oct 23 2006