The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A163972 The MC polynomials. 8
 1, 0, 3, 1, 0, 2, 45, 22, 3, 0, 0, 10, 107, 61, 13, 1, 0, -48, 20, 2100, 14855, 9168, 2390, 300, 15, 0, 0, -336, 92, 6320, 33765, 21803, 6378, 1010, 85, 3, 0, 11520, -2016, -198296, 33012, 2199246, 9547461, 6331782, 1994265, 362474, 39375, 2394, 63 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS The a(n,p) polynomials, see below with the extra p for the column number, generate the coefficients of the left hand columns of triangle A163940. These polynomials are interesting in their own right. They have many curious properties; e.g., for p >= 1: a(n=1, p) = p, a(n=0, p) = 0, a(n = -1, p) = (-1)^(p+1), a(n=-2,p) = (-1)^(p+1)*(2)^(p-2) and a(n = -(2*p+1), 2*p) = 0, which is the outermost zero of the a(n, 2*p); for p >= 10: a(n=-10, p) = -362880*10^(p-10); etc. The numbers in the denominators of the a(n,p) are the Minkowski numbers A053657. The Maple program generates the coefficients of the polynomials that appear in the numerators of the a(n,p), see the sequence above. We have made use of a nice little program that Peter Luschny recently wrote for the Minkowski numbers! For the an(p,k) in the Maple program for p >= 1 we have 0 <= k <= (2*p-2). A word of caution: The value of nmax has to be chosen sufficiently large in order to let Maple find the o.g.f.s. The zero patterns of the a(n,p) polynomials resemble the Montezuma Cypress (Taxodium mucronatum). A famous Montezuma Cypress is 'El Arbol del Tule' (the Tule tree) in Mexico. It is the second stoutest tree in the world, circumference 36 meters, and is approximately 1500 years old. Considering this I propose to call the a(n,p) polynomials the MC polynomials. The row sums equal n*A053657(n). [Johannes W. Meijer, Nov 29 2012] LINKS Johannes W. Meijer, The zeros of the MC polynomials, pdf and jpg. EXAMPLE The a(n,p) formulas of the first few left hand columns of the A163940 triangle (p is the column number): a(n,1) = (1)/1 a(n,2) = (0 + 3*n + n^2)/2 a(n,3) = (0 + 2*n + 45*n^2+ 22*n^3 + 3*n^4)/24 a(n,4) = (0 + 0*n + 10*n^2 + 107*n^3 + 61*n^4 + 13*n^5 + n^6)/48 a(n,5) = (0 - 48*n + 20*n^2 + 2100*n^3 + 14855*n^4 + 9168*n^5 + 2390*n^6 + 300*n^7 + 15*n^8)/5760 a(n,6) = (0 + 0*n -336*n^2 +92*n^3 +6320*n^4 +33765*n^5 +21803*n^6 +6378*n^7 +1010*n^8 +85*n^9 +3*n^10)/11520 a(n,7) = (0 + 11520*n -2016*n^2 -198296*n^3 +33012*n^4 +2199246*n^5 +9547461*n^6+ 6331782*n^7 +1994265*n^8 +362474*n^9 +39375*n^10 +2394*n^11 +63*n^12)/2903040 MAPLE pmax:=6; nmax:=70; with(genfunc): A053657 := proc(n) local P, p, q, s, r; P := select(isprime, [\$2..n]); r:=1; for p in P do s := 0: q := p-1; do if q > (n-1) then break fi; s := s + iquo(n-1, q); q := q*p; od; r := r * p^s; od; r end: for px from 1 to nmax do Gf(px):= convert(series(1/((1-(px-1)*x)^2*product((1-k*x), k=1..px-2)), x, nmax+1-px), polynom): for qy from 0 to nmax-px do a(px+qy, qy):=coeff(Gf(px), x, qy) od; od: for p from 1 to pmax do f(x):=0: for ny from p to nmax do f(x):=f(x)+a(ny, p-1)*x^(ny-p) od: f(x):= series(f(x), x, nmax): Gx:=convert(%, ratpoly): rgf_sequence('recur', Gx, x, G, n): a(n, p):=sort(simplify (rgf_expand(Gx, x, n)), n): f(p):=sort(a(n, p)*A053657(p), n, ascending): for k from 0 to 2*p-2 do an(p, k):= coeff(f(p), n, k) od; od: T:=1: for p from 1 to pmax do for k from 0 to 2*p-2 do a(T):=an(p, k): T:=T+1 od: od: seq(a(n), n=1..T-1); for p from 1 to pmax do seq(an(p, k), k=0..2*p-2) od; for p from 1 to pmax do MC(n, p):=sort(a(n, p), n, ascending) od; CROSSREFS A000012, A000096, A163943 and A163944 are the first four left hand columns of A163940. Cf. A053657 (Minkowski), A163402 and A075264. Sequence in context: A293134 A293053 A144108 * A068464 A244679 A035674 Adjacent sequences:  A163969 A163970 A163971 * A163973 A163974 A163975 KEYWORD easy,sign,tabf AUTHOR Johannes W. Meijer, Aug 13 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 19 00:04 EDT 2021. Contains 345125 sequences. (Running on oeis4.)