login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A068464
Factorial expansion of Gamma(1/4) = Sum_{n>=1} a(n)/n! with largest possible a(n), and Gamma = Euler's gamma function.
5
3, 1, 0, 3, 0, 0, 3, 0, 5, 3, 2, 7, 0, 2, 8, 9, 16, 3, 1, 15, 18, 8, 20, 7, 23, 8, 10, 11, 28, 29, 24, 30, 3, 16, 10, 8, 31, 11, 30, 35, 5, 5, 38, 32, 31, 42, 13, 17, 43, 3, 41, 27, 1, 14, 26, 52, 38, 22, 55, 46, 6, 35, 46, 34, 24, 52, 52, 64, 62, 25, 46, 56, 3, 71, 70, 22, 53, 63, 53
OFFSET
1,1
FORMULA
a(n) = floor(n!*Gamma(1/4)) - n*floor((n-1)!*Gamma(1/4)), for n > 1. - M. F. Hasler, Nov 26 2018
EXAMPLE
Gamma(1/4) = A068466 = 3.6256099... = 3/1! + 1/2! + 0 + 3/4! + 0 + 0 + 3/7! + 0 + 5/9! + 3/10! + 2/11! + ... - M. F. Hasler, Nov 26 2018
MATHEMATICA
r:= Gamma[1/4]; Table[If[n == 1, Floor[r], Floor[n!*r]- n*Floor[(n-1)!*r] ], {n, 1, 100}] (* G. C. Greubel, Mar 29 2018 *)
PROG
(PARI) default(realprecision, 250); b = gamma(1/4); for(n=1, 80, print1(if(n==1, floor(b), floor(n!*b) - n*floor((n-1)!*b)), ", ")) \\ G. C. Greubel, Mar 29 2018
(PARI) A068464(N=90, c=gamma(precision(.25, logint(N!, 10)+1)))=vector(N, n, if(n>1, c=c%1*n, c)\1) \\ - M. F. Hasler, Nov 26 2018
(Magma) SetDefaultRealField(RealField(250)); [Floor(Gamma(1/4))] cat [Floor(Factorial(n)*Gamma(1/4)) - n*Floor(Factorial((n-1))*Gamma(1/4)) : n in [2..80]]; // G. C. Greubel, Nov 27 2018
(Sage)
def A068464(n):
if (n==1): return floor(gamma(1/4))
else: return expand(floor(factorial(n)*gamma(1/4)) - n*floor(factorial(n-1)*gamma(1/4)))
[A068464(n) for n in (1..80)] # G. C. Greubel, Nov 27 2018
CROSSREFS
Cf. A007514, A068466 (decimal expansion), A068463.
Sequence in context: A355665 A144108 A163972 * A244679 A035674 A058600
KEYWORD
easy,nonn
AUTHOR
Benoit Cloitre, Mar 10 2002
STATUS
approved