OFFSET
0,6
LINKS
Amiram Eldar, Antidiagonals n = 0..150, flattened
FORMULA
T(0,k) = 1 and T(n,k) = (n!/k!) * Sum_{j=k+1..n} 1/(j-k) * T(n-j,k)/(n-j)! for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} j! * |Stirling1(n-k*j,j)|/(k!^j * (n-k*j)!).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
3, 2, 0, 0, 0, 0, 0, ...
14, 3, 3, 0, 0, 0, 0, ...
88, 32, 6, 4, 0, 0, 0, ...
694, 150, 20, 10, 5, 0, 0, ...
6578, 1524, 270, 40, 15, 6, 0, ...
MATHEMATICA
T[n_, k_] := n! * Sum[j! * Abs[StirlingS1[n - k*j, j]]/(k!^j*(n - k*j)!), {j, 0, Floor[n/(k + 1)]}]; Table[T[k, n - k], {n, 0, 11}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 13 2022 *)
PROG
(PARI) T(n, k) = n!*sum(j=0, n\(k+1), j!*abs(stirling(n-k*j, j, 1))/(k!^j*(n-k*j)!));
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 13 2022
STATUS
approved