login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355666
Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k/k! * (exp(x) - 1)).
0
1, 1, 1, 1, 0, 3, 1, 0, 2, 13, 1, 0, 0, 3, 75, 1, 0, 0, 3, 28, 541, 1, 0, 0, 0, 6, 125, 4683, 1, 0, 0, 0, 4, 10, 1146, 47293, 1, 0, 0, 0, 0, 10, 195, 8827, 545835, 1, 0, 0, 0, 0, 5, 20, 1281, 94200, 7087261, 1, 0, 0, 0, 0, 0, 15, 35, 5908, 1007001, 102247563, 1, 0, 0, 0, 0, 0, 6, 35, 1176, 68076, 12814390, 1622632573
OFFSET
0,6
FORMULA
T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=k+1..n} binomial(n-k,j-k) * T(n-j,k) for n > 0.
T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} j! * Stirling2(n-k*j,j)/(k!^j * (n-k*j)!).
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 1, 1, ...
1, 0, 0, 0, 0, 0, 0, ...
3, 2, 0, 0, 0, 0, 0, ...
13, 3, 3, 0, 0, 0, 0, ...
75, 28, 6, 4, 0, 0, 0, ...
541, 125, 10, 10, 5, 0, 0, ...
4683, 1146, 195, 20, 15, 6, 0, ...
PROG
(PARI) T(n, k) = n!*sum(j=0, n\(k+1), j!*stirling(n-k*j, j, 2)/(k!^j*(n-k*j)!));
CROSSREFS
Columns k=0..3 give A000670, A052848, A353998, A353999.
Sequence in context: A194582 A357438 A324173 * A293134 A293053 A355652
KEYWORD
nonn,tabl
AUTHOR
Seiichi Manyama, Jul 13 2022
STATUS
approved