login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355663
Square array A(n, k), n, k >= 0, read by antidiagonals; for any number n with runs in binary expansion (r_w, ..., r_0), let p(n) be the polynomial of a single indeterminate x where the coefficient of x^e is r_e for e = 0..w and otherwise 0, and let q be the inverse of p; A(n, k) = q(p(n) + p(k)).
1
0, 1, 1, 2, 3, 2, 3, 4, 4, 3, 4, 7, 12, 7, 4, 5, 8, 8, 8, 8, 5, 6, 11, 24, 15, 24, 11, 6, 7, 12, 19, 16, 16, 19, 12, 7, 8, 15, 28, 23, 48, 23, 28, 15, 8, 9, 16, 16, 24, 39, 39, 24, 16, 16, 9, 10, 19, 48, 31, 56, 51, 56, 31, 48, 19, 10, 11, 20, 35, 32, 32, 35, 35, 32, 32, 35, 20, 11
OFFSET
0,4
COMMENTS
In other words, A(n, k) encodes the sum of the polynomials encoded by n and k.
FORMULA
A(n, k) = A(k, n).
A(n, 0) = n.
A(n, 1) = A014601(n) for any n > 0.
A(n, n) = A001196(n).
EXAMPLE
Array A(n, k) begins:
n\k| 0 1 2 3 4 5 6 7 8 9 10 11 12
---+------------------------------------------------------------
0| 0 1 2 3 4 5 6 7 8 9 10 11 12
1| 1 3 4 7 8 11 12 15 16 19 20 23 24
2| 2 4 12 8 24 19 28 16 48 35 44 39 56
3| 3 7 8 15 16 23 24 31 32 39 40 47 48
4| 4 8 24 16 48 39 56 32 96 71 88 79 112
5| 5 11 19 23 39 51 35 47 79 99 76 103 71
6| 6 12 28 24 56 35 60 48 112 67 92 71 120
7| 7 15 16 31 32 47 48 63 64 79 80 95 96
8| 8 16 48 32 96 79 112 64 192 143 176 159 224
9| 9 19 35 39 71 99 67 79 143 195 156 199 135
10| 10 20 44 40 88 76 92 80 176 156 204 152 184
11| 11 23 39 47 79 103 71 95 159 199 152 207 143
12| 12 24 56 48 112 71 120 96 224 135 184 143 240
PROG
(PARI) toruns(n) = { my (r=[]); while (n, my (v=valuation(n+n%2, 2)); n\=2^v; r=concat(v, r)); r }
fromruns(r) = { my (v=0); for (k=1, #r, v=(v+k%2)*2^r[k]-k%2); v }
A(n, k) = { fromruns(Vec(Pol(toruns(n)) + Pol(toruns(k)))) }
CROSSREFS
KEYWORD
nonn,base,tabl
AUTHOR
Rémy Sigrist, Jul 13 2022
STATUS
approved