login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A355668
Array read by upwards antidiagonals T(n,k) = J(k) + n*J(k+1) where J(n) = A001045(n) is the Jacobsthal numbers.
0
0, 1, 1, 2, 2, 1, 3, 3, 4, 3, 4, 4, 7, 8, 5, 5, 5, 10, 13, 16, 11, 6, 6, 13, 18, 27, 32, 21, 7, 7, 16, 23, 38, 53, 64, 43, 8, 8, 19, 28, 49, 74, 107, 128, 85, 9, 9, 22, 33, 60, 95, 150, 213, 256, 171, 10, 10, 25, 38, 71, 116, 193, 298, 427, 512, 341
OFFSET
0,4
FORMULA
T(n, k) = (2^k - (-1)^k + n*(2^(k + 1) + (-1)^k))/3.
G.f.: (x*(y-1) - y)/((x - 1)^2*(y + 1)*(2*y - 1)). - Stefano Spezia, Jul 13 2022
EXAMPLE
Row n=0 is A001045(k), then for further rows we successively add A001045(k+1).
k=0 k=2 k=3 k=4 k=5 k=6 k=7 k=8 k=9 k=10
n=0: 0 1 1 3 5 11 21 43 85 171 ... = A001045
n=1: 1 2 4 8 16 32 64 128 256 512 ... = A000079
n=2: 2 3 7 13 27 53 107 213 427 853 ... = A048573
n=3: 3 4 10 18 38 74 150 298 598 1194 ... = A171160
n=4: 4 5 13 23 49 95 193 383 769 1535 ... = abs(A140683)
...
MATHEMATICA
T[n_, k_] := (2^k - (-1)^k + n*(2^(k + 1) + (-1)^k))/3; Table[T[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Amiram Eldar, Jul 13 2022 *)
CROSSREFS
Antidiagonal sums give A320933(n+1).
Sequence in context: A200779 A286558 A368153 * A023990 A117894 A177762
KEYWORD
nonn,tabl,easy
AUTHOR
Paul Curtz, Jul 13 2022
STATUS
approved