|
|
A140683
|
|
a(n) = 3*(-1)^(n+1)*2^n - 1.
|
|
5
|
|
|
-4, 5, -13, 23, -49, 95, -193, 383, -769, 1535, -3073, 6143, -12289, 24575, -49153, 98303, -196609, 393215, -786433, 1572863, -3145729, 6291455, -12582913, 25165823, -50331649, 100663295, -201326593, 402653183, -805306369, 1610612735, -3221225473
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,1
|
|
COMMENTS
|
The binomial transform yields -4 followed by the negative of A140657.
The inverse binomial transform yields essentially a signed version of A000244. - R. J. Mathar, Aug 02 2008
|
|
LINKS
|
|
|
FORMULA
|
a(n) = -a(n-1) + 2*a(n-2); a(0)=-4, a(1)=5. - Harvey P. Dale, May 26 2011
|
|
MATHEMATICA
|
Table[3(-1)^(n+1)2^n-1, {n, 0, 40}] (* or *) LinearRecurrence[{-1, 2}, {-4, 5}, (* Harvey P. Dale, May 26 2011 *)40]
|
|
PROG
|
|
|
CROSSREFS
|
|
|
KEYWORD
|
sign
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|