Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Sep 02 2022 12:07:37
%S 1,1,1,1,0,3,1,0,2,13,1,0,0,3,75,1,0,0,3,28,541,1,0,0,0,6,125,4683,1,
%T 0,0,0,4,10,1146,47293,1,0,0,0,0,10,195,8827,545835,1,0,0,0,0,5,20,
%U 1281,94200,7087261,1,0,0,0,0,0,15,35,5908,1007001,102247563,1,0,0,0,0,0,6,35,1176,68076,12814390,1622632573
%N Square array T(n,k), n>=0, k>=0, read by antidiagonals, where column k is the expansion of e.g.f. 1/(1 - x^k/k! * (exp(x) - 1)).
%F T(0,k) = 1 and T(n,k) = binomial(n,k) * Sum_{j=k+1..n} binomial(n-k,j-k) * T(n-j,k) for n > 0.
%F T(n,k) = n! * Sum_{j=0..floor(n/(k+1))} j! * Stirling2(n-k*j,j)/(k!^j * (n-k*j)!).
%e Square array begins:
%e 1, 1, 1, 1, 1, 1, 1, ...
%e 1, 0, 0, 0, 0, 0, 0, ...
%e 3, 2, 0, 0, 0, 0, 0, ...
%e 13, 3, 3, 0, 0, 0, 0, ...
%e 75, 28, 6, 4, 0, 0, 0, ...
%e 541, 125, 10, 10, 5, 0, 0, ...
%e 4683, 1146, 195, 20, 15, 6, 0, ...
%o (PARI) T(n, k) = n!*sum(j=0, n\(k+1), j!*stirling(n-k*j, j, 2)/(k!^j*(n-k*j)!));
%Y Columns k=0..3 give A000670, A052848, A353998, A353999.
%Y Cf. A351703, A355652.
%K nonn,tabl
%O 0,6
%A _Seiichi Manyama_, Jul 13 2022