OFFSET
0,9
COMMENTS
A set partition is crossing if it contains a pair of blocks of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
The topologically connected components of a set partition correspond to the blocks of its minimal non-crossing coarsening.
LINKS
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 3 1
0 2 6 6 1
0 6 15 20 10 1
0 21 51 65 50 15 1
0 85 203 252 210 105 21 1
0 385 912 1120 938 560 196 28 1
0 1907 4527 5520 4620 2898 1302 336 36 1
0 10205 24370 29700 24780 15792 7812 2730 540 45 1
Row n = 4 counts the following set partitions:
{{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{13}{24}} {{12}{34}} {{1}{23}{4}}
{{123}{4}} {{12}{3}{4}}
{{124}{3}} {{1}{24}{3}}
{{134}{2}} {{13}{2}{4}}
{{14}{23}} {{14}{2}{3}}
MATHEMATICA
croXQ[stn_]:=MatchQ[stn, {___, {___, x_, ___, y_, ___}, ___, {___, z_, ___, t_, ___}, ___}/; x<z<y<t||z<x<t<y];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
crosscmpts[stn_]:=csm[Union[Subsets[stn, {1}], Select[Subsets[stn, {2}], croXQ]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[sps[Range[n]], Length[crosscmpts[#]]==k&]], {n, 0, 8}, {k, 0, n}]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 17 2019
STATUS
approved