login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A324173
Regular triangle read by rows where T(n,k) is the number of set partitions of {1,...,n} with k topologically connected components.
22
1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 2, 6, 6, 1, 0, 6, 15, 20, 10, 1, 0, 21, 51, 65, 50, 15, 1, 0, 85, 203, 252, 210, 105, 21, 1, 0, 385, 912, 1120, 938, 560, 196, 28, 1, 0, 1907, 4527, 5520, 4620, 2898, 1302, 336, 36, 1, 0, 10205, 24370, 29700, 24780, 15792, 7812, 2730, 540, 45, 1
OFFSET
0,9
COMMENTS
A set partition is crossing if it contains a pair of blocks of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
The topologically connected components of a set partition correspond to the blocks of its minimal non-crossing coarsening.
EXAMPLE
Triangle begins:
1
0 1
0 1 1
0 1 3 1
0 2 6 6 1
0 6 15 20 10 1
0 21 51 65 50 15 1
0 85 203 252 210 105 21 1
0 385 912 1120 938 560 196 28 1
0 1907 4527 5520 4620 2898 1302 336 36 1
0 10205 24370 29700 24780 15792 7812 2730 540 45 1
Row n = 4 counts the following set partitions:
{{1234}} {{1}{234}} {{1}{2}{34}} {{1}{2}{3}{4}}
{{13}{24}} {{12}{34}} {{1}{23}{4}}
{{123}{4}} {{12}{3}{4}}
{{124}{3}} {{1}{24}{3}}
{{134}{2}} {{13}{2}{4}}
{{14}{23}} {{14}{2}{3}}
MATHEMATICA
croXQ[stn_]:=MatchQ[stn, {___, {___, x_, ___, y_, ___}, ___, {___, z_, ___, t_, ___}, ___}/; x<z<y<t||z<x<t<y];
csm[s_]:=With[{c=Select[Tuples[Range[Length[s]], 2], And[OrderedQ[#], UnsameQ@@#, Length[Intersection@@s[[#]]]>0]&]}, If[c=={}, s, csm[Sort[Append[Delete[s, List/@c[[1]]], Union@@s[[c[[1]]]]]]]]];
crosscmpts[stn_]:=csm[Union[Subsets[stn, {1}], Select[Subsets[stn, {2}], croXQ]]];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
Table[Length[Select[sps[Range[n]], Length[crosscmpts[#]]==k&]], {n, 0, 8}, {k, 0, n}]
KEYWORD
nonn,tabl
AUTHOR
Gus Wiseman, Feb 17 2019
STATUS
approved