login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324171
Number of non-crossing multiset partitions of normal multisets of size n.
14
1, 1, 4, 16, 75, 378, 2042, 11489, 66697
OFFSET
0,3
COMMENTS
A multiset is normal if its union is an initial interval of positive integers.
A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
EXAMPLE
The A255906(5) - a(5) = 22 crossing multiset partitions:
{{13}{124}} {{1}{13}{24}}
{{13}{224}} {{1}{24}{35}}
{{13}{234}} {{2}{13}{24}}
{{13}{244}} {{2}{14}{35}}
{{13}{245}} {{3}{13}{24}}
{{14}{235}} {{3}{14}{25}}
{{24}{113}} {{4}{13}{24}}
{{24}{123}} {{4}{13}{25}}
{{24}{133}} {{5}{13}{24}}
{{24}{134}}
{{24}{135}}
{{25}{134}}
{{35}{124}}
MATHEMATICA
nonXQ[stn_]:=!MatchQ[stn, {___, {___, x_, ___, y_, ___}, ___, {___, z_, ___, t_, ___}, ___}/; x<z<y<t||z<x<t<y];
sps[{}]:={{}}; sps[set:{i_, ___}]:=Join@@Function[s, Prepend[#, s]&/@sps[Complement[set, s]]]/@Cases[Subsets[set], {i, ___}];
mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Sum[Length[Select[mps[m], nonXQ]], {m, allnorm[n]}], {n, 0, 8}]
CROSSREFS
Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.
Sequence in context: A331159 A101205 A301577 * A204772 A050540 A346662
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Feb 17 2019
STATUS
approved