login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of non-crossing multiset partitions of normal multisets of size n.
14

%I #7 Feb 19 2019 00:08:17

%S 1,1,4,16,75,378,2042,11489,66697

%N Number of non-crossing multiset partitions of normal multisets of size n.

%C A multiset is normal if its union is an initial interval of positive integers.

%C A multiset partition is crossing if it has a 2-element submultiset of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.

%e The A255906(5) - a(5) = 22 crossing multiset partitions:

%e {{13}{124}} {{1}{13}{24}}

%e {{13}{224}} {{1}{24}{35}}

%e {{13}{234}} {{2}{13}{24}}

%e {{13}{244}} {{2}{14}{35}}

%e {{13}{245}} {{3}{13}{24}}

%e {{14}{235}} {{3}{14}{25}}

%e {{24}{113}} {{4}{13}{24}}

%e {{24}{123}} {{4}{13}{25}}

%e {{24}{133}} {{5}{13}{24}}

%e {{24}{134}}

%e {{24}{135}}

%e {{25}{134}}

%e {{35}{124}}

%t nonXQ[stn_]:=!MatchQ[stn,{___,{___,x_,___,y_,___},___,{___,z_,___,t_,___},___}/;x<z<y<t||z<x<t<y];

%t sps[{}]:={{}};sps[set:{i_,___}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,___}];

%t mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];

%t allnorm[n_]:=If[n<=0,{{}},Function[s,Array[Count[s,y_/;y<=#]+1&,n]]/@Subsets[Range[n-1]+1]];

%t Table[Sum[Length[Select[mps[m],nonXQ]],{m,allnorm[n]}],{n,0,8}]

%Y Cf. A000108 (non-crossing set partitions), A000124, A001006, A001055, A001263, A007297, A054726 (non-crossing graphs), A099947, A194560, A255906 (multiset partitions of normal multisets), A306438.

%Y Cf. A324166, A324167, A324168, A324169, A324170, A324173.

%K nonn,more

%O 0,3

%A _Gus Wiseman_, Feb 17 2019