login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A324168
Number of non-crossing antichains of nonempty subsets of {1,...,n}.
9
1, 2, 5, 19, 120, 1084, 11783, 141110, 1791156, 23646352, 321220257, 4459886776, 63000867229, 902528825332, 13080523942476, 191445447535373, 2825542818304080, 42005234042942228, 628422035415996065, 9454076958795999908, 142933849346150225253, 2170556938059142024688
OFFSET
0,2
COMMENTS
An antichain is non-crossing if no pair of distinct parts is of the form {{...x...y...}, {...z...t...}} where x < z < y < t or z < x < t < y.
LINKS
FORMULA
Binomial transform of A324167.
G.f.: A(x) = B(x/(1-2*x))/x where B(x)/x is the g.f. of A359984. - Andrew Howroyd, Jan 20 2023
EXAMPLE
The a(0) = 1 through a(3) = 19 non-crossing antichains:
{} {} {} {}
{{1}} {{1}} {{1}}
{{2}} {{2}}
{{12}} {{3}}
{{1}{2}} {{12}}
{{13}}
{{23}}
{{123}}
{{1}{2}}
{{1}{3}}
{{2}{3}}
{{1}{23}}
{{2}{13}}
{{3}{12}}
{{12}{13}}
{{12}{23}}
{{13}{23}}
{{1}{2}{3}}
{{12}{13}{23}}
MATHEMATICA
nn=6;
nonXQ[stn_]:=!MatchQ[stn, {___, {___, x_, ___, y_, ___}, ___, {___, z_, ___, t_, ___}, ___}/; x<z<y<t||z<x<t<y];
stableSets[u_, Q_]:=If[Length[u]===0, {{}}, With[{w=First[u]}, Join[stableSets[DeleteCases[u, w], Q], Prepend[#, w]&/@stableSets[DeleteCases[u, r_/; r===w||Q[r, w]||Q[w, r]], Q]]]];
Table[Length[stableSets[Subsets[Range[n], {1, n}], SubsetQ[##]||!nonXQ[{#1, #2}]&]], {n, 0, nn}]
PROG
(PARI) seq(n)={my(f=O(1)); for(n=2, n, f = 1 + (4*x + x^2)*f^2 - 3*x^2*(1 + x)*f^3); Vec(subst(x*(1 + x^2*f^2 - 3*x^3*f^3), x, x/(1-2*x))/x) } \\ Andrew Howroyd, Jan 20 2023
CROSSREFS
Cf. A000108 (non-crossing set partitions), A000124, A000372 (antichains), A001006, A001263, A006126 (antichain covers), A014466 (nonempty antichains), A054726 (non-crossing graphs), A099947, A261005, A306438.
Sequence in context: A089126 A113346 A198945 * A322011 A355519 A342435
KEYWORD
nonn
AUTHOR
Gus Wiseman, Feb 17 2019
EXTENSIONS
Terms a(9) and beyond from Andrew Howroyd, Jan 20 2023
STATUS
approved