login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089126
a(n+2) = F(n+1)*a(n+1) + F(n)*a(n) where F(n) = Fibonacci number (A000045), a(0) = a(1) = 1.
2
1, 1, 1, 2, 5, 19, 110, 975, 13555, 297330, 10393875, 581772345, 52349401830, 7590091602225, 1776029657181945, 671331672100911690, 410181883162313724165, 405259031001185201881755, 647603522027573971050913590, 1674054699591760033962965879295
OFFSET
0,4
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..99
Thotsaporn Aek Thanatipanonda and Yi Zhang, Sequences: Polynomial, C-finite, Holonomic, ..., arXiv:2004.01370 [math.CO], 2020.
FORMULA
Floor(a(n)/a(n-1)) = F(n-1) where F(n) = Fibonacci number. - Gerald McGarvey, Jul 17 2004
a(n) = determinant of the tridiagonal matrix of order n+1, where the subdiagonal is [-1,-1,...,-1], the diagonal is [1,F(0),F(1),...,F(n-1)], and the superdiagonal is [1,F(0),...,F(n-2)]. - Emanuele Munarini, Apr 17 2013
MATHEMATICA
a[n_] := a[n] = Fibonacci[n-1]*a[n-1] + Fibonacci[n-2]*a[n-2]; a[0] = 1; a[1] = 1;
PROG
(Maxima) F(i, j) := if i=j+1 then -1 elseif i=j then fib(i-2) elseif i=j-1 then fib(i-2) else 0; M(n):=genmatrix(lambda([i, j], F(i, j)), n+1, n+1);
makelist(determinant(M(n)), n, 0, 12); /* Emanuele Munarini, Apr 17 2013 */
(Magma) I:=[1, 1, 1]; [n le 3 select I[n] else Fibonacci(n-2)*Self(n-1)+Fibonacci(n-3)*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 27 2018
CROSSREFS
Cf. A000045.
Sequence in context: A328977 A224691 A192445 * A113346 A198945 A324168
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Dec 05 2003
EXTENSIONS
a(18)-a(19) from Vincenzo Librandi, Feb 27 2018
STATUS
approved