login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A089128
a(n) = gcd(6,n).
16
6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2, 1, 6, 1, 2, 3, 2
OFFSET
0,1
COMMENTS
Also greatest common divisor of n^2-6 and n^2+6.
The second term of sequences of this type for n=0,1,2... form the sequence 1,2,1,2,1,... in decimal 0.1212121212... = 4/33.
Multiplicative with a(p^e) = GCD(p^e, 6). - David W. Wilson, Jun 12 2005
From Jaroslav Krizek, May 27 2010: (Start)
a(n) = denominators of averages of squares of the first n positive integers for n >= 1.
a(n) is periodic sequence with period (6, 1, 2, 3, 2, 1).
See A175485 - numerators of averages of squares of the first n positive integers.
a(n) = A175485(n) * n / A000330(n).
For n = 337 holds: a(n) = 1 and simultaneously A175485(n) is square ( = 38025 = 195^2), i.e., the number k = 195 is quadratic mean (root mean square) of the first 337 positive integers. There are other such numbers - see A084231 and A084232.
Sqrt(A175485(n) / a(n)) for n >= 1 is the harmonic mean of the first n positive integers. (End)
FORMULA
a(n) = 1 + [2|n] + 2*[3|n] + 2*[6|n] = (15 + 5*(-1)^n + 4*cos(n*Pi/3) + 12*cos(n*2*Pi/3))/6, where [x|y] is 1 if x divides y, 0 otherwise. - Mitch Harris Jun 15 2005
From R. J. Mathar, Apr 04 2011: (Start)
Dirichlet g.f.: zeta(s)*(1+1/2^s+2/3^s+2/6^s).
G.f.: (-6 - x - 2*x^2 - 3*x^3 - 2*x^4 - x^5) / ((x-1)*(1+x)*(1 + x + x^2)*(x^2 - x + 1)). (End)
a(n) = ((n-1) mod 2 + 1)*( 2*floor(((n-1) mod 3)/2) + 1). - Gary Detlefs, Dec 28 2011
MATHEMATICA
GCD[Range[0, 110], 6] (* or *) PadRight[{}, 110, {6, 1, 2, 3, 2, 1}] (* Harvey P. Dale, Dec 26 2018 *)
PROG
(PARI) g(n) = for(x=0, n, print1(gcd(x^2-6, x^2+6)", "))
(Haskell)
a089128 = gcd 6 -- Reinhard Zumkeller, Apr 06 2015
CROSSREFS
Sequence in context: A165070 A246711 A164809 * A222215 A106687 A083463
KEYWORD
easy,nonn,mult
AUTHOR
Cino Hilliard, Dec 05 2003
EXTENSIONS
Name changed, using David W. Wilson's formula, by Franklin T. Adams-Watters, May 16 2018
STATUS
approved