login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084231 Numbers n such that root-mean-square value of 1, 2, ..., n, sqrt(Sum(k^2, k, 1, n)/n), is an integer. 6
1, 337, 65521, 12710881, 2465845537, 478361323441, 92799630902161, 18002650033695937, 3492421306906109761, 677511730889751597841, 131433783371304903871537, 25497476462302261599480481, 4946378999903267445395341921, 959572028504771582145096852337 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Equivalently, sqrt((n+1)*(2*n+1)/6) is an integer.

LINKS

Indranil Ghosh, Table of n, a(n) for n = 1..437

Peter Khoury and Gerard D. Koffi, Continued fractions and their application to solving Pell’s equations (2009)

Tanya Khovanova, Recursive Sequences

Index entries for linear recurrences with constant coefficients, signature (195,-195,1).

FORMULA

a(n) = ((7/2 + 2sqrt(3))(97 + 56sqrt(3))^n + (7/2 - 2sqrt(3))(97 - 56sqrt(3))^n - 3)/4 a(n)=([(7/2 + 2sqrt(3))(97 + 56rq(3))^n] - 2)/4, [x] = integer part of x. a(n+3)=195(a(n+2) - a(n+1)) + a(n).

G.f.: x(1+142x+x^2)/[(1-x)(1-194x+x^2)].

a(n) = ((7-4sqrt(3))^(1+2n)+(7+4sqrt(3))^(1+2n)-6)/8. - Peter Pein (peter.pein(AT)dordos.de), Mar 03 2005

a(n) = 195*a(n-1)- 195*a(n-2)+ a(n-3), with a(0)=0, a(1)=1, a(2)=337, a(3)=65521. - Harvey P. Dale, Jul 14 2011

EXAMPLE

a(1)=337 because sqrt(Sum(k^2, k, 1, 337)/337) is integer (195=A084232(1)).

MATHEMATICA

a[n_]:=Expand[((7-4Sqrt[3])^(1+2n)+(7+4Sqrt[3])^(1+2n)-6)/8] (Pein)

CoefficientList[Series[x (1+142x+x^2)/((1-x)(1-194x+x^2)), {x, 0, 30}], x] (* or *) Join[{0}, LinearRecurrence[{195, -195, 1}, {1, 337, 65521}, 30]] (* Harvey P. Dale, Jul 14 2011 *)

CROSSREFS

Cf. A084232.

Sequence in context: A263865 A184202 A194478 * A243483 A234625 A226539

Adjacent sequences:  A084228 A084229 A084230 * A084232 A084233 A084234

KEYWORD

nonn,easy

AUTHOR

Ignacio Larrosa Cañestro, May 20 2003

EXTENSIONS

One more term from Peter Pein (peter.pein(AT)dordos.de), Mar 03 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified April 27 00:46 EDT 2017. Contains 285506 sequences.