login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084229
Let b(1)=1, b(2)=2, b(n) = sum of digits of b(1)+b(2)+b(3)+...+b(n-1), sequence gives values of n such that b(n)=3.
2
3, 5, 7, 9, 17, 19, 27, 29, 87, 95, 97, 159, 591, 599, 601, 663, 1143, 4609, 4617, 4619, 4681, 5161, 8993, 13165, 38277, 38279, 38341, 38821, 42653, 46825, 75043, 79223, 327015, 327023, 327025, 327087, 327567, 331399, 335571, 363789, 367969, 642981, 647153, 2847029, 2847031, 2847093, 2847573
OFFSET
1,1
COMMENTS
The {b(n)} sequence is A084228. - N. J. A. Sloane, Jun 26 2014
Note that b(k)==0 (mod 3) for n>2.
LINKS
FORMULA
Conjecture : a(n)/n^3 is bounded.
MATHEMATICA
k = 3; lst = {}; a = 3; While[k < 100000001, b = a + Total@ IntegerDigits@ a; If[b == a + 3, AppendTo[lst, k]; Print@ k]; a = b; k++]; lst (* Robert G. Wilson v, Jun 27 2014 *)
PROG
(PARI) upto(n)={my(L=List(), s=3, k=3); while(k<=n, my(t=sumdigits(s)); if(t==3, listput(L, k)); s+=t; k++); Vec(L)} \\ Andrew Howroyd, Oct 16 2024
CROSSREFS
Sequence in context: A117913 A064411 A146556 * A191356 A144753 A220221
KEYWORD
base,nonn
AUTHOR
Benoit Cloitre, Jun 21 2003
EXTENSIONS
a(23) onward from Robert G. Wilson v, Jun 27 2014
STATUS
approved