login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A084229 Let b(1)=1, b(2)=2, b(n) = sum of digits of b(1)+b(2)+b(3)+...+b(n-1), sequence gives values of n such that b(n)=3. 2

%I

%S 3,5,7,9,17,19,27,29,87,95,97,159,591,599,601,663,1143,4609,4617,4619,

%T 4681,5161,8993,13165,38277,38279,38341,38821,42653,46825,75043,79223,

%U 327015,327023,327025,327087,327567,331399,335571,363789,367969,642981,647153,2847029,2847031,2847093,2847573

%N Let b(1)=1, b(2)=2, b(n) = sum of digits of b(1)+b(2)+b(3)+...+b(n-1), sequence gives values of n such that b(n)=3.

%C The {b(n)} sequence is A084228. - _N. J. A. Sloane_, Jun 26 2014

%C Note that b(k)==0 (mod 3) for n>2.

%H Robert G. Wilson v, <a href="/A084229/b084229.txt">Table of n, a(n) for n = 1..107</a>

%F Conjecture : a(n)/n^3 is bounded.

%t k = 3; lst = {}; a = 3; While[k < 100000001, b = a + Total@ IntegerDigits@ a; If[b == a + 3, AppendTo[lst, k]; Print@ k]; a = b; k++]; lst (* _Robert G. Wilson v_, Jun 27 2014 *)

%o (PARI) // sumdig(n)=sum(k=0,ceil(log(n)/log(10)),floor(n/10^k)%10) // an=vector(10000); a(n)=if(n<0,0,an[n]) // an[1]=1; an[2]=2; for(n=3,5300,an[n]=sumdig(sum(k=1,n-1,a(k)))) // for(n=1,5300,if(a(n)==3,print1(n,",")))

%Y Cf. A065075, A084228.

%K base,nonn

%O 1,1

%A _Benoit Cloitre_, Jun 21 2003

%E a(23) onward from _Robert G. Wilson v_, Jun 27 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 22:02 EST 2019. Contains 330012 sequences. (Running on oeis4.)