login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A084228
a(1)=1, a(2)=2; thereafter a(n) = sum of digits of (a(1)+a(2)+a(3)+...+a(n-1)).
4
1, 2, 3, 6, 3, 6, 3, 6, 3, 6, 12, 6, 12, 15, 12, 15, 3, 6, 3, 6, 12, 6, 12, 15, 12, 15, 3, 6, 3, 6, 12, 6, 12, 15, 12, 15, 12, 6, 12, 6, 12, 15, 12, 15, 12, 15, 12, 6, 12, 15, 12, 15, 12, 15, 12, 15, 12, 15, 12, 15, 21, 15, 12, 15, 12, 15, 21, 24, 12, 15, 12, 15, 21, 24, 12, 15, 21, 15
OFFSET
1,2
COMMENTS
a(n) == 3 or 6 (mod 9) n>2.
a(n) = 3 for n in A084229.
a(n) = 6 for n = 4, 6, 8, 10, 12, 18, 20, 22, 28, 30, 32, 38, 40, 48, 86, 88, 90, 96, 98, 100, 106, 108, 116, 160, 162, 168, 170, 178, ..., 17630. - Robert G. Wilson v, Jun 27 2014
MATHEMATICA
a[1] = 1; a[2] = 2; a[n_] := a[n] = Sum[ Total@ IntegerDigits@ a@ i, {i, n - 1}]; Array[ Total@ IntegerDigits@ a@# &, 78] (* Robert G. Wilson v, Jun 27 2014 *)
nxt[{t_, a_}]:=Module[{c=Total[IntegerDigits[t]]}, {t+c, c}]; Join[{1}, NestList[nxt, {3, 2}, 80][[;; , 2]]] (* Harvey P. Dale, Jul 13 2023 *)
PROG
(PARI) // sumdig(n)=sum(k=0, ceil(log(n)/log(10)), floor(n/10^k)%10) // an=vector(10000); a(n)=if(n<0, 0, an[n]) // an[1]=1; an[2]=2; for(n=3, 300, an[n]=sumdig(sum(k=1, n-1, a(k)))) //
(Haskell)
a084228 n = a084228_list !! (n-1)
a084228_list = 1 : 2 : f 3 where
f x = y : f (x + y) where y = a007953 x
-- Reinhard Zumkeller, Nov 13 2014
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Benoit Cloitre, Jun 21 2003
STATUS
approved