login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A016052 a(1) = 3; for n >= 1, a(n+1) = a(n) + sum of its digits. 25
3, 6, 12, 15, 21, 24, 30, 33, 39, 51, 57, 69, 84, 96, 111, 114, 120, 123, 129, 141, 147, 159, 174, 186, 201, 204, 210, 213, 219, 231, 237, 249, 264, 276, 291, 303, 309, 321, 327, 339, 354, 366, 381, 393, 408, 420, 426, 438, 453, 465, 480, 492 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,1
COMMENTS
Mod 9 this sequence is 3, 6, 3, 6, 3, 6, ... This shows that this sequence is disjoint from A004207. - N. J. A. Sloane, Oct 15 2013
REFERENCES
D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959.
D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963.
G. E. Stevens and L. G. Hunsberger, A Result and a Conjecture on Digit Sum Sequences, J. Recreational Math. 27, no. 4 (1995), pp. 285-288.
LINKS
D. R. Kaprekar, The Mathematics of the New Self Numbers [annotated and scanned]
FORMULA
a(n) = A062028(a(n-1)) for n > 1. - Reinhard Zumkeller, Oct 14 2013
a(n) - a(n-1) = A084228(n+1). - Robert G. Wilson v, Jun 27 2014
MATHEMATICA
NestList[# + Total[IntegerDigits[#]] &, 3, 51] (* Jayanta Basu, Aug 11 2013 *)
a[1] = 3; a[n_] := a[n] = a[n - 1] + Total@ IntegerDigits@ a[n - 1]; Array[a, 80] (* Robert G. Wilson v, Jun 27 2014 *)
PROG
(Haskell)
a016052 n = a016052_list !! (n-1)
a016052_list = iterate a062028 3 -- Reinhard Zumkeller, Oct 14 2013
(PARI)
a_list(nn) = { my(f(n, i) = n + vecsum(digits(n)), S=vector(nn+1)); S[1]=3; for(k=2, #S, S[k] = fold(f, S[1..k-1])); S[2..#S] } \\ Satish Bysany, Mar 04 2017
CROSSREFS
Sequence in context: A016051 A070790 A114614 * A323649 A115803 A290258
KEYWORD
nonn,base,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 27 10:47 EST 2024. Contains 370377 sequences. (Running on oeis4.)