login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016051
Numbers of the form 9*k+3 or 9*k+6.
7
3, 6, 12, 15, 21, 24, 30, 33, 39, 42, 48, 51, 57, 60, 66, 69, 75, 78, 84, 87, 93, 96, 102, 105, 111, 114, 120, 123, 129, 132, 138, 141, 147, 150, 156, 159, 165, 168, 174, 177, 183, 186, 192, 195, 201, 204, 210, 213, 219, 222, 228, 231, 237, 240
OFFSET
1,1
FORMULA
a(n) = 3*A001651(n).
a(n+1) = a(n) + its digital root in decimal base.
From R. J. Mathar, Dec 16 2009: (Start)
a(n) = a(n-1) + a(n-2) - a(n-3) = 9*n/2 - 9/4 - 3*(-1)^n/4.
G.f: 3*x*(1+x+x^2)/((1+x)*(x-1)^2). (End)
a(n) = 9*(n-1) - a(n-1) (with a(1)=3). - Vincenzo Librandi, Nov 19 2010
Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(9*sqrt(3)). - Amiram Eldar, Sep 26 2022
From Amiram Eldar, Nov 22 2024: (Start)
Product_{n>=1} (1 - (-1)^n/a(n)) = (2/sqrt(3)) * cos(Pi/18) (A199589).
Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3)) * sin(2*Pi/9). (End)
MATHEMATICA
Select[Range[240], MatchQ[Mod[#, 9], 3|6]&] (* Jean-François Alcover, Sep 17 2013 *)
LinearRecurrence[{1, 1, -1}, {3, 6, 12}, 60] (* or *) #+{3, 6}&/@(9*Range[0, 30])//Flatten (* Harvey P. Dale, Oct 04 2021 *)
CROSSREFS
Subsequence of A145204. - Reinhard Zumkeller, Oct 04 2008
Sequence in context: A256882 A191267 A145204 * A070790 A114614 A016052
KEYWORD
nonn,easy
STATUS
approved