OFFSET
1,3
COMMENTS
If the side lengths of a quadrilateral form a harmonic progression in the ratio 1 : 1/(1+d) : 1/(1+2d) : 1/(1+3d) where d is the common difference between the denominators of the harmonic progression, then the triangle inequality condition requires that d be in the range f < d < g, where g = 1.1371580... and is the greatest root of the equation: 2 + 6d - 6d^3 = 0. The value of f is given in A199590.
FORMULA
Equals sqrt(4/3)*cos(Pi/18). - Charles R Greathouse IV, Nov 10 2011
Equals Product_{k>=1} (1 - (-1)^k/A016051(k)). - Amiram Eldar, Nov 22 2024
EXAMPLE
1.13715804260325761283766795192009876258136039422990658596288796494425...
MATHEMATICA
N[Reduce[2+6d-6d^3==0, d], 100]
RealDigits[(2/Sqrt[3]) * Cos[Pi/18], 10, 120][[1]] (* Amiram Eldar, Nov 22 2024 *)
PROG
(PARI) real(polroots(6*x^3-6*x-2)[3]) \\ Charles R Greathouse IV, Nov 10 2011
(PARI) polrootsreal(6*x^3-6*x-2)[3] \\ Charles R Greathouse IV, Apr 14 2014
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Frank M Jackson, Nov 08 2011
STATUS
approved