login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354977
Triangle read by rows. T(n, k) = Sum_{j=0..n}((-1)^(n-j)*binomial(n, j)*j^(n+k)) / n!.
2
1, 1, 1, 1, 3, 7, 1, 6, 25, 90, 1, 10, 65, 350, 1701, 1, 15, 140, 1050, 6951, 42525, 1, 21, 266, 2646, 22827, 179487, 1323652, 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280, 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053
OFFSET
0,5
FORMULA
T(n, k) = Stirling2(n + k, n).
EXAMPLE
Triangle T(n, k) begins:
[0] 1;
[1] 1, 1;
[2] 1, 3, 7;
[3] 1, 6, 25, 90;
[4] 1, 10, 65, 350, 1701;
[5] 1, 15, 140, 1050, 6951, 42525;
[6] 1, 21, 266, 2646, 22827, 179487, 1323652;
[7] 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280;
[8] 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053;
MAPLE
T := (n, k) -> add((-1)^(n - j)*binomial(n, j)*j^(n + k), j = 0..n) / n!:
seq(seq(T(n, k), k = 0..n), n = 0..8);
CROSSREFS
T(n,1) = A000217, T(n,n) = A007820, A354978 (row sums), A048993.
Sequence in context: A010781 A019806 A199589 * A080172 A133065 A335815
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Jun 15 2022
STATUS
approved