|
|
A354977
|
|
Triangle read by rows. T(n, k) = Sum_{j=0..n}((-1)^(n-j)*binomial(n, j)*j^(n+k)) / n!.
|
|
2
|
|
|
1, 1, 1, 1, 3, 7, 1, 6, 25, 90, 1, 10, 65, 350, 1701, 1, 15, 140, 1050, 6951, 42525, 1, 21, 266, 2646, 22827, 179487, 1323652, 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280, 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,5
|
|
LINKS
|
|
|
FORMULA
|
T(n, k) = Stirling2(n + k, n).
|
|
EXAMPLE
|
Triangle T(n, k) begins:
[0] 1;
[1] 1, 1;
[2] 1, 3, 7;
[3] 1, 6, 25, 90;
[4] 1, 10, 65, 350, 1701;
[5] 1, 15, 140, 1050, 6951, 42525;
[6] 1, 21, 266, 2646, 22827, 179487, 1323652;
[7] 1, 28, 462, 5880, 63987, 627396, 5715424, 49329280;
[8] 1, 36, 750, 11880, 159027, 1899612, 20912320, 216627840, 2141764053;
|
|
MAPLE
|
T := (n, k) -> add((-1)^(n - j)*binomial(n, j)*j^(n + k), j = 0..n) / n!:
seq(seq(T(n, k), k = 0..n), n = 0..8);
|
|
CROSSREFS
|
|
|
KEYWORD
|
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|