OFFSET
0,5
COMMENTS
Sum_{m>=1} 1/z(m) is a divergent series; see A332614.
Sum_{m>=1} 1/z(m)^2 = 0.0231049931...; see A332645.
Sum_{m>=1} 1/z(m)^3 = 0.0007295482727097...; see A333360.
Sum_{m>=1} 1/z(m)^4 = 0.0000371725992852...; this sequence.
Sum_{m>=1} 1/z(m)^5 = 0.0000022311886995...; see A335814.
Sum_{m>=1} 1/(1/4 + z(m)^2) = 0.023095708966...; see A074760.
Sum_{m>=1} 1/(1/2 + i*z(m))^2 + 1/(1/2 - i*z(m))^2 = -0.046154317...; see A245275.
Sum_{m>=1} 1/(1/2 + i*z(m))^3 + 1/(1/2 - i*z(m))^3 = -0.00011115823...; see A245276.
LINKS
André Voros, Zeta functions for the Riemann zeros, arXiv:math/0104051 [math.CV], 2002-2003, p.25 Table 2.
André Voros, Zeta functions for the Riemann zeros, 2001(2008) p.20 Table 1.
André Voros, Zeta functions for the Riemann zeros, Annales de l'Institut Fourier, Tome 53 (2003) no. 3, p. 665-699.
André Voros, Zeta functions over Zeros of the Zeta functions, 2010, p. 153.
FORMULA
Equals 16-Pi^4/24+(Zeta[4,3/4]-Zeta[4,1/4])/64-(Log[Zeta[x]]''''[1/2])/24
EXAMPLE
0.0000371725992852696861648662624717405784536508897300...
MATHEMATICA
Join[{0, 0, 0, 0}, RealDigits[N[-1/12*(D[Log[Zeta[x]], {x, 4}]/. x -> 1/2) - 1/24 Pi^4 -(Zeta[4, 1/4] - Zeta[4, 3/4])/64 + 16, 105]][[1]]]
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Artur Jasinski, Jun 25 2020
STATUS
approved