login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354975
a(n) = Sum_{i=1..n} (prime(i+n) mod prime(i)).
3
1, 2, 6, 9, 16, 26, 25, 46, 47, 54, 81, 112, 140, 116, 173, 215, 254, 234, 317, 329, 409, 440, 511, 584, 581, 582, 666, 649, 776, 866, 875, 967, 1057, 1152, 1310, 1419, 1246, 1294, 1296, 1551, 1599, 1722, 1970, 2152, 2166, 2154, 2338, 2396, 2523, 2831, 3120, 2867, 3220, 3332, 3274, 3266, 3462
OFFSET
1,2
LINKS
EXAMPLE
For n = 3, a(n) = (7 mod 2) + (11 mod 3) + (13 mod 5) = 1+2+3 = 6.
MAPLE
f:= proc(n) local k;
add(ithprime(n+k) mod ithprime(k), k=1..n)
end proc:
map(f, [$1..100]);
MATHEMATICA
a[n_]:=Sum[Mod[Prime[i+n], Prime[i]], {i, n}]; Array[a, 57] (* Stefano Spezia, Jun 15 2022 *)
PROG
(PARI) a(n) = sum(i=1, n, prime(i+n) % prime(i)); \\ Michel Marcus, Jun 15 2022
(Python)
from sympy import prime
def A354975(n): return sum(prime(i+n) % prime(i) for i in range(1, n+1)) # Chai Wah Wu, Jun 19 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
J. M. Bergot and Robert Israel, Jun 15 2022
STATUS
approved