login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A354973
a(0)=0; for n > 0, a(n) = 2*a(n-1) if n-1 is prime, a(n-1) + 1 otherwise.
0
0, 1, 2, 4, 8, 9, 18, 19, 38, 39, 40, 41, 82, 83, 166, 167, 168, 169, 338, 339, 678, 679, 680, 681, 1362, 1363, 1364, 1365, 1366, 1367, 2734, 2735, 5470, 5471, 5472, 5473, 5474, 5475, 10950, 10951, 10952, 10953, 21906, 21907, 43814, 43815, 43816, 43817, 87634
OFFSET
0,3
FORMULA
a(n) = A110299(k) - 2^k + n + 1, where k = primepi(n-1) and taking A110299(0) = 0. - Kevin Ryde, Jun 22 2022
EXAMPLE
5 is prime, so a(6) = 2*a(5) = 2*9 = 18.
6 is not prime, so a(7) = a(6) + 1 = 18 + 1 = 19.
MATHEMATICA
a[0] = 0; a[n_] := a[n] = If[PrimeQ[n - 1], 2*a[n - 1], a[n - 1] + 1]; Array[a, 50, 0] (* Amiram Eldar, Jun 21 2022 *)
PROG
(Python)
from sympy import isprime
a = [0]; [a.append(2*a[-1] if isprime(n) else a[-1]+1) for n in range(48)]
print(a) # Michael S. Branicky, Jun 21 2022
(PARI) a(n) = my(k=primepi(n-1)); fromdigits(primes(k), 2) - 1<<k + n + 1; \\ Kevin Ryde, Jun 22 2022
CROSSREFS
Cf. A110299.
Sequence in context: A294441 A246347 A255717 * A177404 A046685 A248741
KEYWORD
nonn
AUTHOR
Ben White, Jun 14 2022
STATUS
approved