login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A043548
Least separator of first n Egyptian fractions; i.e., least k for which the integers floor(k/m) for m=1,2,...,n are distinct.
2
1, 1, 2, 6, 9, 16, 20, 30, 42, 49, 64, 81, 90, 110, 132, 156, 169, 196, 225, 256, 272, 306, 342, 380, 420, 441, 484, 529, 576, 625, 650, 702, 756, 812, 870, 930, 961, 1024, 1089, 1156, 1225, 1296, 1332, 1406, 1482, 1560, 1640
OFFSET
1,3
COMMENTS
For n > 1: A257213(a(n)) = n. - Reinhard Zumkeller, Apr 19 2015
After the initial 1, 1, the sequence appears to alternate between runs of pronic numbers and squares with run lengths 2,2,3,3,4,4,... - Charlie Neder, Oct 04 2018
LINKS
FORMULA
a(n) = n^2 + floor(sqrt(n-1))*floor(sqrt(n)+1/2) - n*floor(sqrt(n-1)) - n*floor(sqrt(n)+1/2), for n>1. - Ridouane Oudra, Jun 08 2020
a(n) = n^2 - n*t + floor((t^2)/4), where t = floor(sqrt(4*n-3)) for n>1. - Ridouane Oudra, Jan 24 2023
PROG
(Haskell)
a043548 n = f 1 where
f k = if distinct $ (map (div k)) [n, n-1 .. 1] then k else f (k + 1)
distinct [_] = True; distinct (u:vs@(v:_)) = u /= v && distinct vs
-- Reinhard Zumkeller, Apr 19 2015
(PARI) a(n)={if(n==1, 1, my(t=sqrtint(4*n-3)); n^2 - n*t + t^2\4)} \\ Andrew Howroyd, Feb 04 2023
CROSSREFS
Cf. A257213.
Sequence in context: A320496 A172433 A049622 * A347535 A354975 A280228
KEYWORD
nonn
STATUS
approved