

A257213


Least d>0 such that floor(n/d) = floor(n/(d+1)).


4



1, 2, 3, 2, 3, 3, 4, 4, 3, 5, 4, 4, 5, 5, 5, 4, 6, 6, 5, 5, 7, 6, 6, 6, 5, 7, 7, 7, 6, 6, 8, 8, 7, 7, 7, 6, 8, 8, 8, 8, 7, 7, 9, 9, 9, 8, 8, 8, 7, 10, 9, 9, 9, 9, 8, 8, 10, 10, 10, 10, 9, 9, 9, 8, 11, 11, 10, 10, 10, 10, 9, 9, 11, 11, 11, 11, 11, 10, 10, 10
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,2


COMMENTS

For n > 1: a(A043548(n)) = n.  Reinhard Zumkeller, Apr 19 2015 ~


LINKS

Michael De Vlieger, Table of n, a(n) for n = 0..10000


FORMULA

a(n) >= A003059(n+1) = floor(sqrt(n))+1 >= A003059(n) = ceiling(sqrt(n)) >= A257212(n), with strict inequality (in the middle relation) when n is a square.
a(k^21) = k for k > 1. Proof: For n=k^21=(k1)(k+1), floor(n/k) = k1 = n/(k+1), but n/(k1)=k+1 and when denominators decrease further, this keeps increasing.
a(k^2) >= k+d when k > d(d1). Proof: This follows from k^2/(k+d) = kd+d^2/(k+d), which shows that a(k) >= d when k > d(d1).


EXAMPLE

a(0)=1 because 0/1 = 0/2.
a(1)=2 because [1/1] = 1 > [1/2] = 0 = [1/3], where [x] := floor(x).
a(2)=3 because [2/1] = 2 > [2/2] = 1 > [2/3] = 0 = [2/4].


MATHEMATICA

f[n_] := Block[{d, k}, Reap@ For[k = 0, k <= n, k++, d = 1; While[Floor[k/d] != Floor[k/(d + 1)], d++]; Sow@ d] // Flatten // Rest]; f@ 79 (* Michael De Vlieger, Apr 18 2015 *)


PROG

(PARI) A257213(n)=for(d=sqrtint(n)+1, n+1, n\d==n\(d+1)&&return(d))
(Haskell)
a257213 n = head [d  d < [1..], div n d == div n (d + 1)]
 Reinhard Zumkeller, Apr 19 2015


CROSSREFS

Cf. A003059, A257212.
Cf. A043548.
Sequence in context: A026256 A079715 A030397 * A205780 A204905 A082597
Adjacent sequences: A257210 A257211 A257212 * A257214 A257215 A257216


KEYWORD

nonn,nice,hear


AUTHOR

M. F. Hasler, Apr 18 2015


STATUS

approved



