The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60th year, we have over 367,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A257211 Numbers n such that the decimal expansions of both n and n^2 have 1 as smallest digit and 8 as largest digit. 16
 128, 178, 871, 1128, 1178, 1218, 1258, 1278, 1284, 1328, 1358, 1368, 1478, 1678, 1681, 1768, 1778, 1784, 1785, 1828, 1874, 1881, 2681, 2861, 2871, 3418, 3581, 3718, 3816, 3841, 4178, 4318, 4815, 4831, 4841, 4881, 5178, 5181, 5182, 5318, 5815, 5841, 5871, 5881 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Felix Fröhlich, Table of n, a(n) for n = 1..10000 MATHEMATICA fQ[n_] := Block[{d = DigitCount@ n}, Plus @@ Take[d, {9, 10}] == 0 && d[[1]] > 0 && d[[8]] > 0]; Select[Range@ 6000, fQ@ # && fQ[#^2] &] (* Michael De Vlieger, Apr 20 2015 *) sd1ld8Q[n_]:=With[{idn=IntegerDigits[n]}, Max[idn]==8&&Min[idn]==1]; Select[ Range[ 6000], AllTrue[{#, #^2}, sd1ld8Q]&] (* Harvey P. Dale, Oct 14 2022 *) PROG (PARI) is(n) = vecmin(digits(n))==1 && vecmin(digits(n^2))==1 && vecmax(digits(n))==8 && vecmax(digits(n^2))==8 CROSSREFS Cf. A256630, A256631, A256633, A256634, A256708, A256709, A256889, A257197, A257210, A256601. Sequence in context: A114565 A243812 A194766 * A109651 A114408 A114418 Adjacent sequences: A257208 A257209 A257210 * A257212 A257213 A257214 KEYWORD nonn,base AUTHOR Felix Fröhlich, Apr 18 2015 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 8 13:46 EST 2023. Contains 367679 sequences. (Running on oeis4.)