login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 9*k+3 or 9*k+6.
7

%I #38 Nov 23 2024 05:46:51

%S 3,6,12,15,21,24,30,33,39,42,48,51,57,60,66,69,75,78,84,87,93,96,102,

%T 105,111,114,120,123,129,132,138,141,147,150,156,159,165,168,174,177,

%U 183,186,192,195,201,204,210,213,219,222,228,231,237,240

%N Numbers of the form 9*k+3 or 9*k+6.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (1,1,-1).

%F a(n) = 3*A001651(n).

%F a(n+1) = a(n) + its digital root in decimal base.

%F From _R. J. Mathar_, Dec 16 2009: (Start)

%F a(n) = a(n-1) + a(n-2) - a(n-3) = 9*n/2 - 9/4 - 3*(-1)^n/4.

%F G.f: 3*x*(1+x+x^2)/((1+x)*(x-1)^2). (End)

%F a(n) = 9*(n-1) - a(n-1) (with a(1)=3). - _Vincenzo Librandi_, Nov 19 2010

%F Sum_{n>=1} (-1)^(n+1)/a(n) = Pi/(9*sqrt(3)). - _Amiram Eldar_, Sep 26 2022

%F From _Amiram Eldar_, Nov 22 2024: (Start)

%F Product_{n>=1} (1 - (-1)^n/a(n)) = (2/sqrt(3)) * cos(Pi/18) (A199589).

%F Product_{n>=1} (1 + (-1)^n/a(n)) = (2/sqrt(3)) * sin(2*Pi/9). (End)

%t Select[Range[240], MatchQ[Mod[#, 9], 3|6]&] (* _Jean-François Alcover_, Sep 17 2013 *)

%t LinearRecurrence[{1,1,-1},{3,6,12},60] (* or *) #+{3,6}&/@(9*Range[0,30])//Flatten (* _Harvey P. Dale_, Oct 04 2021 *)

%Y Cf. A001651, A199589.

%Y Subsequence of A145204. - _Reinhard Zumkeller_, Oct 04 2008

%K nonn,easy

%O 1,1

%A _Robert G. Wilson v_