The OEIS is supported by the many generous donors to the OEIS Foundation. Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 60, we have over 367,000 sequences, and we’ve crossed 11,000 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A004207 a(0) = 1, a(n) = sum of digits of all previous terms. (Formerly M1115) 66
 1, 1, 2, 4, 8, 16, 23, 28, 38, 49, 62, 70, 77, 91, 101, 103, 107, 115, 122, 127, 137, 148, 161, 169, 185, 199, 218, 229, 242, 250, 257, 271, 281, 292, 305, 313, 320, 325, 335, 346, 359, 376, 392, 406, 416, 427, 440, 448, 464, 478, 497, 517, 530, 538 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS If the leading 1 is omitted, this is the important sequence b(1)=1, for n >= 2, b(n) = b(n-1) + sum of digits of b(n-1). Cf. A016052, A016096, etc. - N. J. A. Sloane, Dec 01 2013 Same digital roots as A065075 (Sum of digits of the sum of the preceding numbers) and A001370 (Sum of digits of 2^n)); they end in the cycle {1 2 4 8 7 5}. - Alexandre Wajnberg, Dec 11 2005 More precisely, mod 9 this sequence is 1 (1 2 4 8 7 5)*, the parenthesized part being repeated indefinitely. This shows that this sequence is disjoint from A016052. - N. J. A. Sloane, Oct 15 2013 There are infinitely many even terms (Belov 2003). a(n) = A007618(n-5) for n > 57; a(n) = A006507(n-4) for n > 15. - Reinhard Zumkeller, Oct 14 2013 REFERENCES N. Agronomof, Problem 4421, L'Intermédiaire des mathématiciens, v. 21 (1914), p. 147. D. R. Kaprekar, Puzzles of the Self-Numbers. 311 Devlali Camp, Devlali, India, 1959. D. R. Kaprekar, The Mathematics of the New Self Numbers, Privately printed, 311 Devlali Camp, Devlali, India, 1963. J. Roberts, Lure of the Integers, Math. Assoc. America, 1992, p. 65. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). G. E. Stevens and L. G. Hunsberger, A Result and a Conjecture on Digit Sum Sequences, J. Recreational Math. 27, no. 4 (1995), pp. 285-288. LINKS T. D. Noe, Table of n, a(n) for n = 0..10000 A. Ya. Belov (ed.), Collection of monster problems in mathematics (in Russian), 2003. Problem 39. D. R. Kaprekar, The Mathematics of the New Self Numbers [annotated and scanned] J. Laroche & N. J. A. Sloane, Correspondence, 1977 Project Euler, Problem 551: Sum of digits sequence. Kenneth B. Stolarsky, The sum of a digitaddition series, Proc. Amer. Math. Soc. 59 (1976), no. 1, 1--5. MR0409340 (53 #13099) Index entries for Colombian or self numbers and related sequences FORMULA For n>1, a(n) = a(n-1) + sum of digits of a(n-1). For n > 1: a(n) = A062028(a(n-1)). - Reinhard Zumkeller, Oct 14 2013 MAPLE read("transforms") : A004207 := proc(n) option remember; if n = 0 then 1; else add( digsum(procname(i)), i=0..n-1) ; end if; end proc: # R. J. Mathar, Apr 02 2014 # second Maple program: a:= proc(n) option remember; `if`(n<2, 1, (t-> t+add(i, i=convert(t, base, 10)))(a(n-1))) end: seq(a(n), n=0..60); # Alois P. Heinz, Jul 31 2022 MATHEMATICA f[s_] := Append[s, Plus @@ Flatten[IntegerDigits /@ s]]; Nest[f, {1}, 55] (* Robert G. Wilson v, May 26 2006 *) f[n_] := n + Plus @@ IntegerDigits@n; Join[{1}, NestList[f, 1, 80]] (* Alonso del Arte, May 27 2006 *) PROG (Haskell) a004207 n = a004207_list !! n a004207_list = 1 : iterate a062028 1 -- Reinhard Zumkeller, Oct 14 2013, Sep 12 2011 (PARI) a(n) = { my(f(d, i) = d+vecsum(digits(d)), S=vector(n)); S=1; for(k=1, n-1, S[k+1] = fold(f, S[1..k])); S } \\ Satish Bysany, Mar 03 2017 (PARI) a = 1; print1(a, ", "); for(i = 1, 50, print1(a, ", "); a = a + sumdigits(a)); \\ Nile Nepenthe Wynar, Feb 10 2018 (Python) from itertools import islice def agen(): yield 1; an = 1 while True: yield an; an += sum(map(int, str(an))) print(list(islice(agen(), 54))) # Michael S. Branicky, Jul 31 2022 CROSSREFS Cf. A016052, A016096, A033298, A007612, A007953, A229527, A230107. For the base-2 analog see A010062. A065075 gives sum of digits of a(n). See A219675 for an essentially identical sequence. Sequence in context: A130917 A007612 A112395 * A219675 A062729 A004620 Adjacent sequences: A004204 A004205 A004206 * A004208 A004209 A004210 KEYWORD nonn,base,easy,nice AUTHOR N. J. A. Sloane EXTENSIONS Errors from 25th term on corrected by Leonid Broukhis, Mar 15 1996 Typo in definition fixed by Reinhard Zumkeller, Sep 14 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 1 21:21 EST 2023. Contains 367502 sequences. (Running on oeis4.)