login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A010062 a(0)=1; thereafter a(n+1) = a(n) + number of 1's in binary representation of a(n). 33
1, 2, 3, 5, 7, 10, 12, 14, 17, 19, 22, 25, 28, 31, 36, 38, 41, 44, 47, 52, 55, 60, 64, 65, 67, 70, 73, 76, 79, 84, 87, 92, 96, 98, 101, 105, 109, 114, 118, 123, 129, 131, 134, 137, 140, 143, 148, 151, 156, 160, 162, 165, 169, 173, 178, 182, 187, 193, 196, 199, 204 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Sequence A230297 (and A157845 without initial term) converted from binary to decimal, cf. formula. - M. F. Hasler, Nov 18 2019

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Raoul Nakhmanson-Kulish, Graph of a(n)/(n*log_2(n)/2), showing self-similar fractal structure.

Raoul Nakhmanson-Kulish, Graph of f(n), where f(n) = (a(n)-n*log_2(n)/2)/(n*sqrt(log_2(n)*log_2 log_2(n))) (see Stolarsky's estimate below).

Kenneth B. Stolarsky, The sum of a digitaddition series, Proc. Amer. Math. Soc. 59 (1976), no. 1, 1--5. MR0409340 (53 #13099)

Index entries for Colombian or self numbers and related sequences

FORMULA

a(n) = (n/2)*log n + O(n*sqrt(log n * loglog n)), where log means log_2. In particular, a(n) ~ (n/2)*log n. [Stolarsky]

a(n + 1) = A092391(a(n)) = a(n) + A000120(a(n)). - Reinhard Zumkeller, May 27 2012, May 08 2004; corrected thanks to a notice by Lambert Herrgesell

a(n) = A028897(A230297(n)) = A028897(A157845(n+1)). - M. F. Hasler, Nov 18 2019

EXAMPLE

a(7) = 14 because a(6) = 12, which is 1100 in binary (having 2 on bits), and 12 + 2 = 14.

a(8) = 17 because a(7) = 14, which is 1110 in binary (having 3 on bits), and 14 + 3 = 17.

MATHEMATICA

NestList[# + DigitCount[#, 2, 1] &, 1, 60] (* Alonso del Arte, Oct 26 2012 *)

PROG

(PARI) print1(s=1); for(n=2, 30, print1(", ", s+=hammingweight(s))) \\ Charles R Greathouse IV, Oct 27 2012

(PARI) A10062=List(1); A010062(n)={for(n=#A10062, n, listput(A10062, A092391(A10062[n]))); A10062[n+1]} \\ A092391(n)=n+hammingweight(n). - M. F. Hasler, Nov 18 2019

(Haskell)

a010062 n = a010062_list !! n

a010062_list = iterate a092391 1  -- Reinhard Zumkeller, May 13 2012

(MAGMA) [n le 1 select 1 else Self(n-1)+&+Intseq(Self(n-1), 2): n in [1..61]]; // Bruno Berselli, Oct 27 2012

CROSSREFS

First row of A228083.

For the base-10 analog see A004207.

Cf. A010061, A092391, A229167, A096303, A229743, A229744, A230297 (this sequence written in binary), A230298 (read mod 2).

See A230088 for partial sums.

Equals A028897 o A230297 = A028897 o A157845 (up to offset); see also A007088.

Sequence in context: A254860 A144726 A123885 * A119565 A119592 A191892

Adjacent sequences:  A010059 A010060 A010061 * A010063 A010064 A010065

KEYWORD

nonn,base,easy,nice

AUTHOR

Leonid Broukhis, Mar 15 1996

EXTENSIONS

More terms from Benoit Cloitre, Jun 02 2002

Stolarsky reference from Matthew C. Russell, Oct 08 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 15 22:38 EDT 2020. Contains 335774 sequences. (Running on oeis4.)