login
A096303
Number of iterations of n -> n + (number of 1's in binary representation of n) needed for the trajectory of n to join the trajectory of A010062.
4
0, 0, 0, 1, 0, 4, 0, 3, 2, 0, 1, 0, 2, 0, 1, 1, 0, 2, 0, 1, 6, 0, 2, 5, 0, 4, 1, 0, 3, 2, 0, 3, 2, 1, 1, 0, 5, 0, 2, 4, 0, 3, 1, 0, 2, 7, 0, 7, 1, 6, 1, 0, 5, 3, 0, 2, 4, 2, 1, 0, 3, 1, 6, 0, 0, 2, 0, 1, 5, 0, 2, 4, 0, 3, 1, 0, 2, 5, 0, 5, 1, 4, 1, 0, 3, 10, 0, 2, 2, 9, 1, 0, 1, 8, 1, 0, 8, 0, 7, 7, 0, 6, 6, 6, 0
OFFSET
1,6
COMMENTS
Conjecture: For any positive integer starting value n, iterations of n -> n + (number of 1's in binary representation of n) will eventually join A010062.
EXAMPLE
a(6)=4 because the trajectory for 1 (sequence A010062) starts
1->2->3->5->7->10->12->14->17->19->22->25...
and the trajectory for 6 starts
6->8->9->11->14->17->19->22->25->28->31->36...
so the sequence beginning with 6 joins A010062 after 4 steps.
PROG
(PARI) a(n) = { my (o=1); for (k=0, oo, while (o<n, o=o+hammingweight(o)); if (o==n, return (k), n=n+hammingweight(n))) } \\ Rémy Sigrist, Apr 05 2020
CROSSREFS
Cf. A010062.
For records see A229743, A229744.
Sequence in context: A086165 A301408 A227290 * A262695 A021252 A348991
KEYWORD
base,nonn
AUTHOR
Jason Earls, Jun 25 2004
STATUS
approved