login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A230297
a(n) = A010062(n) written in binary: a(n+1) = a(n) + hammingweight(a(n)) in binary.
4
1, 10, 11, 101, 111, 1010, 1100, 1110, 10001, 10011, 10110, 11001, 11100, 11111, 100100, 100110, 101001, 101100, 101111, 110100, 110111, 111100, 1000000, 1000001, 1000011, 1000110, 1001001, 1001100, 1001111, 1010100, 1010111, 1011100, 1100000, 1100010, 1100101, 1101001, 1101101, 1110010, 1110110, 1111011, 10000001, 10000011
OFFSET
0,2
COMMENTS
Is there any way to tell by looking at a binary number whether or not it is a term of this sequence?
FORMULA
a(n) = A157845(n+1) = A007088(A010062(n)) = A007088(A092391(A028897(a(n-1)))). - M. F. Hasler, Nov 18 2019
MATHEMATICA
s[0] = 1; s[n_] := s[n] = s[n-1] + DigitCount[s[n-1], 2, 1]; Table[FromDigits[IntegerDigits[s[n], 2]], {n, 0, 50}] (* Amiram Eldar, Jul 28 2023 *)
PROG
(PARI) (A230297(n)=A007088(A010062(n))); A230297_vec(N)={vector(N, i, if(i>1, A007088(N+=hammingweight(N)), N=1))} \\ M. F. Hasler, Nov 18 2019
CROSSREFS
Cf. A010062.
Essentially the same as A157845.
Cf. A004207 (base-10 analog); A007088 (n in binary), A010062 (this written in base 10), A000120 (Hammingweight), A092391 (A000120(n) + n), A028897 (convert binary to decimal).
Sequence in context: A171676 A118240 A157845 * A086084 A206073 A004676
KEYWORD
nonn,base
AUTHOR
N. J. A. Sloane, Oct 17 2013
STATUS
approved