OFFSET
0,6
COMMENTS
We conjecture that a(n) is never -1.
LINKS
MAPLE
read transforms; # to get digsum
M:=2000;
# f(s) returns the sequence k->k+digsum(k) starting at s
f:=proc(s) global M; option remember; local n, k, s1;
s1:=[s]; k:=s;
for n from 1 to M do k:=k+digsum(k);
s1:=[op(s1), k]; od: end;
# g(s) returns (x, p), where x = first number in common between
# f(s) and one of f(1), f(3), f(9) and p is the position where it occurred.
# If f(s) and all of f(1), f(3), f(9) are disjoint for M terms, returns (-1, -1)
S1:=convert(f(1), set):
S3:=convert(f(3), set):
S9:=convert(f(9), set):
g:=proc(s) global f, S1, S3, S9; local t1, p, T0, T1, T2;
T0:=f(s):
T1:=convert(T0, set);
if ((s mod 9) = 3) or ((s mod 9) = 6) then T2:= T1 intersect S3; t1:=min(T2); if (t1 = infinity) then RETURN(-1, -1); else member(t1, T0, 'p'); RETURN(t1, p-1); fi;
elif ((s mod 9) = 0) then T2:= T1 intersect S9; t1:=min(T2); if (t1 = infinity) then RETURN(-1, -1); else member(t1, T0, 'p'); RETURN(t1, p-1); fi;
else T2:= T1 intersect S1; t1:=min(T2); if (t1 = infinity) then RETURN(-1, -1); else member(t1, T0, 'p'); RETURN(t1, p-1); fi;
fi;
end;
[seq(g(n)[2], n=1..45)];
CROSSREFS
KEYWORD
AUTHOR
N. J. A. Sloane and Reinhard Zumkeller, Oct 21 2013
EXTENSIONS
Terms a(46) and beyond from Lars Blomberg, Jan 10 2018
STATUS
approved