login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308235
Take apart the sides of each of the integer-sided scalene triangles with perimeter n (at their vertices) and rearrange them orthogonally in 3-space so that their endpoints coincide at a single point. a(n) is the total surface area of all rectangular prisms enclosed in this way.
1
0, 0, 0, 0, 0, 0, 0, 0, 52, 0, 76, 94, 212, 126, 426, 328, 724, 624, 1130, 1020, 1938, 1540, 2648, 2568, 3910, 3432, 5482, 4970, 7364, 6850, 9616, 9072, 12954, 11696, 16086, 15576, 20544, 19152, 25698, 24240, 31530, 30072, 38148, 36630, 46870, 44022, 55240
OFFSET
1,9
FORMULA
a(n) = 2 * Sum_{k=1..floor((n-1)/3)} Sum_{i=k+1..floor((n-k-1)/2)} sign(floor((i+k)/(n-i-k+1))) * (i*k + i*(n-i-k) + k*(n-i-k)).
Conjectures from Colin Barker, May 16 2019: (Start)
G.f.: 2*x^9*(26 + 52*x + 90*x^2 + 97*x^3 + 94*x^4 + 71*x^5 + 56*x^6 + 31*x^7 + 17*x^8 + 5*x^9 + x^10) / ((1 - x)^5*(1 + x)^4*(1 + x^2)^3*(1 + x + x^2)^3).
a(n) = -2*a(n-1) - 2*a(n-2) + a(n-3) + 7*a(n-4) + 10*a(n-5) + 7*a(n-6) - 5*a(n-7) - 17*a(n-8) - 19*a(n-9) - 9*a(n-10) + 9*a(n-11) + 19*a(n-12) + 17*a(n-13) + 5*a(n-14) - 7*a(n-15) - 10*a(n-16) - 7*a(n-17) - a(n-18) + 2*a(n-19) + 2*a(n-20) + a(n-21) for n>21.
(End)
EXAMPLE
There is one integer-sided scalene triangle with perimeter 9: (2,3,4). The surface area of the enclosed rectangular prism is 2*(2*3 + 2*4 + 3*4) = 52. So a(9) = 52.
MATHEMATICA
2*Sum[Sum[(i*k + i*(n - i - k) + k*(n - i - k))*Sign[Floor[(i + k)/(n - i - k + 1)]], {i, k + 1, Floor[(n - k - 1)/2]}], {k, Floor[(n - 1)/3]}], {n, 100}]
CROSSREFS
Cf. A308233.
Sequence in context: A324683 A214373 A230299 * A022079 A230107 A275412
KEYWORD
nonn
AUTHOR
Wesley Ivan Hurt, May 16 2019
STATUS
approved