login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A308238
Nonprimes k such that k^10 + k^9 + k^8 + k^7 + k^6 + k^5 + k^4 + k^3 + k^2 + k + 1 is prime.
1
1, 20, 21, 30, 60, 86, 172, 195, 212, 224, 258, 268, 272, 319, 339, 355, 365, 366, 390, 398, 414, 480, 504, 534, 539, 543, 567, 592, 626, 654, 735, 756, 766, 770, 778, 806, 812, 874, 943, 973, 1003, 1036, 1040, 1065, 1194, 1210, 1239, 1243, 1264, 1309, 1311
OFFSET
1,2
COMMENTS
A240693 Union {this sequence} = A162862.
The corresponding prime numbers, (11111111111)_k, are Brazilian primes and belong to A085104 and A285017 (except 11).
EXAMPLE
(11111111111)_20 = (20^11 - 1)/19 = 10778947368421 is prime, thus 20 is a term.
MAPLE
filter:= n -> not isprime(n) and isprime((n^11-1)/(n-1)) : select(filter, [$2..5000]);
MATHEMATICA
Select[Range@ 1320, And[! PrimeQ@ #, PrimeQ@ Total[#^Range[0, 10]]] &] (* Michael De Vlieger, Jun 09 2019 *)
PROG
(Magma) [1] cat [n:n in [2..1500]|not IsPrime(n) and IsPrime(Floor((n^11-1)/(n-1)))]; // Marius A. Burtea, May 16 2019
(PARI) isok(n) = !isprime(n) && isprime(polcyclo(11, n)); \\ Michel Marcus, May 19 2019
CROSSREFS
Intersection of A064108 and A285017.
Similar to A182253 for k^2+k+1, A286094 for k^4+k^3+k^2+k+1, A288939 for k^6+k^5+k^4+k^3+k^2+k+1.
Sequence in context: A295488 A008940 A014368 * A118865 A118608 A176241
KEYWORD
nonn
AUTHOR
Bernard Schott, May 16 2019
STATUS
approved