login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A286301
Primes of the form p^10 + p^9 + p^8 + p^7 + p^6 + p^5 + p^4 + p^3 + p^2 + p + 1 when p is prime.
4
12207031, 2141993519227, 178250690949465223, 2346320474383711003267, 398341412240537151131351, 79545183674814239059370551, 494424256962371823779424877, 8271964541879648991904246901, 32142180034067960734115528951, 91264002187709396686868598317
OFFSET
1,1
EXAMPLE
Prime number 12207031 = Sum_{i=0..10} 5^i is the first in the sequence since 23 divides 88573 = Sum_{i=0..10} 3^i as well as 2047 = Sum_{i=0..10} 2^i.
MATHEMATICA
a286301[n_] := Select[Map[(Prime[#]^11-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
a286301[150] (* data *)
CROSSREFS
Subsequence of A060885, A162861 and A193574.
Sequence in context: A263391 A204888 A268418 * A022217 A133373 A321987
KEYWORD
nonn
AUTHOR
Hartmut F. W. Hoft, May 05 2017
STATUS
approved