OFFSET
1,1
COMMENTS
When m is a term, then, necessarily, the digit that is removed is the second from the left.
This sequence is finite with 95 integers and the greatest term is 180625. The number of terms with respectively 2, 3, 4, 5, 6 digits is 23, 44, 10, 17, 1.
The obtained quotients m/d belong to: { 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19 } (all proofs in Diophante link).
LINKS
Marius A. Burtea, Table of n, a(n) for n = 1..95
Diophante, A333. Un chiffre à la trappe, Oct. 2011 (in French).
EXAMPLE
264 is a term because 264/24 = 11.
34875 is a term because 34875/3875 = 9.
MATHEMATICA
Select[Range[700], With[{m = #}, And[Mod[#, 10] != 0, AnyTrue[FromDigits@ Delete[IntegerDigits[m], #] & /@ Range[2, IntegerLength@ m], Mod[m, #] == 0 &]]] &] (* Michael De Vlieger, Jun 09 2019 *)
PROG
(MATLAB) m=1;
for u=10:700 digit=dec2base(u, 10)-'0';
if digit(length(digit))~=0 aa=str2num(strrep(num2str(digit), ' ', ''));
digit(2)=[]; a=str2num(strrep(num2str(digit), ' ', ''));
if mod(aa, a)==0 sol(m)=u; m=m+1; end; end; end;
sol % Marius A. Burtea, May 16 2019
(PARI) isok(m) = {if (m % 10, my(d=digits(m)); for (k=2, #d, mk = fromdigits(vector(#d-1, i, if (i<k, d[i], d[i+1]))); if (!(m % mk), return(1)); ); ); } \\ Michel Marcus, Jun 21 2019
CROSSREFS
KEYWORD
nonn,base,fini
AUTHOR
Bernard Schott, May 16 2019
STATUS
approved