login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m not ending with 0 that contain a digit, other than the leftmost digit, that can be removed such that the resulting number d divides m.
1

%I #34 Jul 01 2019 01:22:17

%S 11,12,13,14,15,16,17,18,19,22,24,26,28,33,36,39,44,48,55,66,77,88,99,

%T 105,108,121,132,135,143,154,165,176,187,192,195,198,225,231,242,253,

%U 264,275,286,297,315,341,352,363,374,385,396,405,451,462,473,484,495,561,572,583,594,671,682,693

%N Numbers m not ending with 0 that contain a digit, other than the leftmost digit, that can be removed such that the resulting number d divides m.

%C When m is a term, then, necessarily, the digit that is removed is the second from the left.

%C This sequence is finite with 95 integers and the greatest term is 180625. The number of terms with respectively 2, 3, 4, 5, 6 digits is 23, 44, 10, 17, 1.

%C The obtained quotients m/d belong to: { 6, 7, 9, 11, 12, 13, 14, 15, 16, 17, 18, 19 } (all proofs in Diophante link).

%H Marius A. Burtea, <a href="/A308237/b308237.txt">Table of n, a(n) for n = 1..95</a>

%H Diophante, <a href="http://www.diophante.fr/problemes-par-themes/arithmetique-et-algebre/a3-nombres-remarquables/2110-a333-un-chiffre-a-la-trappe">A333. Un chiffre à la trappe</a>, Oct. 2011 (in French).

%e 264 is a term because 264/24 = 11.

%e 34875 is a term because 34875/3875 = 9.

%t Select[Range[700], With[{m = #}, And[Mod[#, 10] != 0, AnyTrue[FromDigits@ Delete[IntegerDigits[m], #] & /@ Range[2, IntegerLength@ m], Mod[m, #] == 0 &]]] &] (* _Michael De Vlieger_, Jun 09 2019 *)

%o (MATLAB) m=1;

%o for u=10:700 digit=dec2base(u,10)-'0';

%o if digit(length(digit))~=0 aa=str2num(strrep(num2str(digit), ' ', ''));

%o digit(2)=[]; a=str2num(strrep(num2str(digit), ' ', ''));

%o if mod(aa,a)==0 sol(m)=u; m=m+1; end; end; end;

%o sol % _Marius A. Burtea_, May 16 2019

%o (PARI) isok(m) = {if (m % 10, my(d=digits(m)); for (k=2, #d, mk = fromdigits(vector(#d-1, i, if (i<k, d[i], d[i+1]))); if (!(m % mk), return(1));););} \\ _Michel Marcus_, Jun 21 2019

%Y Cf. A034837, A178157.

%K nonn,base,fini

%O 1,1

%A _Bernard Schott_, May 16 2019