login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285017
Primes of the form 1 + n + n^2 + n^3 + ... + n^k, n > 1, k > 1 where n is not prime.
7
43, 73, 157, 211, 241, 421, 463, 601, 757, 1123, 1483, 2551, 2971, 3307, 3907, 4423, 4831, 5701, 6007, 6163, 6481, 8191, 9901, 11131, 12211, 12433, 13807, 14281, 19183, 20023, 20593, 21757, 22621, 22651, 23563, 24181, 26083, 26407, 27061, 28393, 31153, 35533
OFFSET
1,1
COMMENTS
These numbers are Brazilian primes belonging to A085104.
Brazilian primes with n prime are A023195, except 3 which is not Brazilian.
A085104 = This sequence Union { A023195 \ number 3 }.
k + 1 is necessarily prime, but that's not sufficient: 1 + 10 + 100 = 111.
Most of these terms come from A185632 which are prime numbers 111_n with n no prime, the first other term is 22621 = 11111_12, the next one is 245411 = 11111_22.
Number of terms < 10^k: 0, 2, 9, 23, 64, 171, 477, 1310, 3573, 10098, ..., . - Robert G. Wilson v, Apr 15 2017
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..10000 (terms 1..1310 from Robert G. Wilson v)
Bernard Schott, Les nombres brésiliens, Reprinted from Quadrature, no. 76, April-June 2010, pages 30-38, included here with permission from the editors of Quadrature.
EXAMPLE
157 = 12^2 + 12 + 1 = 111_12 is prime and 12 is composite.
MAPLE
N:= 40000: # to get all terms <= N
res:= NULL:
for k from 2 to ilog2(N) do if isprime(k) then
for n from 2 do
p:= (n^(k+1)-1)/(n-1);
if p > N then break fi;
if isprime(p) and not isprime(n) then res:= res, p fi
od fi od:
res:= {res}:
sort(convert(res, list)); # Robert Israel, Apr 14 2017
MATHEMATICA
mx = 36000; g[n_] := Select[Drop[Accumulate@Table[n^ex, {ex, 0, Log[n, mx]}], 2], PrimeQ]; k = 1; lst = {}; While[k < Sqrt@mx, If[CompositeQ@k, AppendTo[lst, g@k]; lst = Sort@Flatten@lst]; k++]; lst (* Robert G. Wilson v, Apr 15 2017 *)
PROG
(PARI) isok(n) = {if (isprime(n), forcomposite(b=2, n, d = digits(n, b); if ((#d > 2) && (vecmin(d) == 1) && (vecmax(d)== 1), return(1)); ); ); return(0); } \\ Michel Marcus, Apr 09 2017
(PARI) A285017_vec(n)={my(h=vector(n, i, 1), y, c, z=4, L:list); L=List(); forprime(x=3, , forcomposite(m=z, x-1, y=digits(x, m); if((y==h[1..#y])&&2<#y, listput(L, x); z=m; if(c++==n, return(Vec(L))))))} \\ R. J. Cano, Apr 18 2017
KEYWORD
nonn
AUTHOR
Bernard Schott, Apr 08 2017
STATUS
approved