login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A290635
Greatest of 4 consecutive primes with consecutive gaps 6, 4, 2.
1
43, 73, 283, 619, 1303, 1669, 1789, 1873, 1999, 2143, 2383, 2689, 2803, 4519, 5419, 5443, 5653, 7879, 9013, 11833, 13693, 14563, 17389, 18133, 18313, 20359, 21493, 22159, 24109, 27283, 32719, 35533, 36793, 37573, 41233, 41959, 42409, 42463, 44269, 47149, 50593, 55219, 55819, 55933
OFFSET
1,1
COMMENTS
All terms = {13, 19} mod 30.
LINKS
FORMULA
a(n) = A078855(n) + 12.
EXAMPLE
43 is a member of the sequence because 43 is the greatest of the 4 consecutive primes 31, 37, 41, 43 with consecutive gaps 6, 4, 2; that is, 37 - 31 = 6, 41 - 37 = 4, 43 - 41 = 2.
MAPLE
for i from 1 to 10^5 do if ithprime(i+1)=ithprime(i)+6 and ithprime(i+2)=ithprime(i)+4 and ithprime(i+3)=ithprime(i)+2 then print(ithprime(i+3)); fi; od; # Corrected by Robert Israel, Jun 28 2018
# More efficient:
primes:= select(isprime, [seq(seq(30*i+j, j=[13, 19]), i=1..10^4)]):
select(t -> isprime(t-2) and isprime(t-6) and isprime(t-12) and not isprime(t-8), primes); # Robert Israel, Jun 28 2018
MATHEMATICA
With[{s = Differences@ Prime@ Range[10^4]}, Prime[1 + SequencePosition[s, {6, 4, 2}][[All, -1]] ] ] (* Michael De Vlieger, Aug 16 2017 *)
Select[Partition[Prime[Range[6000]], 4, 1], Differences[#]=={6, 4, 2}&][[All, 4]] (* Harvey P. Dale, Feb 13 2022 *)
PROG
(GAP)
K:=2*10^5+1;; # to get all terms <= K.
P:=Filtered([1, 3..K], IsPrime);; I:=Reversed([2, 4, 6]);;
P1:=List([1..Length(P)-1], i->P[i+1]-P[i]);;
P2:=List([1..Length(P)-Length(I)], i->[P1[i], P1[i+1], P1[i+2]]);;
P3:=List(Positions(P2, I), i->P[i+Length(I)]);
# More efficient
(GAP) Filtered(Set(Flat(List([13, 19], j->List([1..2000], i->30*i+j)))), j->IsPrime(j) and IsPrime(j-12) and not IsPrime(j-10) and not IsPrime(j-8) and IsPrime(j-6) and not IsPrime(j-4) and IsPrime(j-2)); # Muniru A Asiru, Jul 03 2018
(PARI) is(n) = if(!ispseudoprime(n), return(0), my(v=[n-2, n-6, n-12]); if(v[1]==precprime(n-1) && v[2]==precprime(v[1]-1) && v[3]==precprime(v[2]-1), return(1))); 0 \\ Felix Fröhlich, Aug 10 2017
CROSSREFS
Subsequence of A006512 and A098413.
Sequence in context: A054807 A285017 A139932 * A176925 A080177 A238248
KEYWORD
nonn
AUTHOR
Muniru A Asiru, Aug 08 2017
STATUS
approved