The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A290637 Numerators of the sequence 1, 1/2, (1/2)/(3/4), ((1/2)/(3/4))/((5/6)/(7/8)), ... . 2
 1, 1, 2, 7, 286, 144305, 276620298878, 4929053594885296570083, 2778177345800469611391891486368048702791639566906088871615186 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS The sequence of fractions f(n) tends to 1/sqrt(2). Factors of numerators before cancellation (1,1,4,6,7,10,11,13,16,18,19,...) coincide with A026147 (for n>0). Factors of denominators before cancellation (1,2,3,5,8,9,12,14,15,17,...) coincide with A181155 (for n>0). REFERENCES Jean-Paul Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence, in C. Ding, T. Helleseth, N. Niederreiter (eds.), Sequences and their Applications: Proceedings of SETA '98, Springer-Verlag, London, 1999, pp. 1-16. Michael Trott, Exercises of The Mathematica GuideBook for Numerics, Chapter 2, p. 33. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..12 Michael Trott, Mathematica Guidebooks, Sample Exercises Numerics p. 33. Donald R. Woods and David Robbins and Gustaf Gripenberg, Solution to Problem E2692, American Mathematical Monthly, Vol. 86, No. 5 (May 1979), pp. 394-395. FORMULA f(n) = Product_{k=0..2^(n-1)-1} ((2k+1)/(2k+2))^((-1)^tm(k)), where tm(k) is the Thue-Morse sequence A010060. EXAMPLE f(3): 1*4*6*7/(2*3*5*8) = 7/10, hence a(3) = 7. f(5): 1*4*6*7*10*11*13*16*18*19*21*24*25*28*30*31 / (2*3*5*8*9*12*14*15*17*20*22*23*26*27*29*32) = 144305 / 204102 = 0.707024..., hence a(5) = 144305. Sequence of fractions f(n) begin: 1/1, 1/2, 2/3, 7/10, 286/405, 144305/204102, ... MAPLE g:= (i, j)-> `if`(j=0, i, g(i, j-1)/g(i+2^(j-1), j-1)): a:= n-> numer(g(1, n)): seq(a(n), n=0..10);  # Alois P. Heinz, Aug 08 2017 MATHEMATICA f[1] = id[1]/id[2]; f[n_] := f[n] = f[n-1]/(f[n-1] /. id[k_] :> id[k + 2^(n-1)]); a[n_]:= f[n] /. id -> Identity // Numerator; Array[a, 8] PROG (Python) from sympy.core.cache import cacheit from sympy import numer @cacheit def g(i, j): return i if j==0 else g(i, j - 1)/g(i + 2**(j - 1), j - 1) def a(n): return numer(g(1, n)) print map(a, range(11)) # Indranil Ghosh, Aug 09 2017, after Maple code CROSSREFS Cf. A010060, A026147, A094541 (supersequence of numerators), A094542 (supersequence of denominators), A181155, A290638 (denominators). Sequence in context: A037067 A012987 A187603 * A260967 A128456 A137666 Adjacent sequences:  A290634 A290635 A290636 * A290638 A290639 A290640 KEYWORD nonn AUTHOR Jean-François Alcover, Aug 08 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)