login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A290637 Numerators of the sequence 1, 1/2, (1/2)/(3/4), ((1/2)/(3/4))/((5/6)/(7/8)), ... . 2
1, 1, 2, 7, 286, 144305, 276620298878, 4929053594885296570083, 2778177345800469611391891486368048702791639566906088871615186 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

The sequence of fractions f(n) tends to 1/sqrt(2).

Factors of numerators before cancellation (1,1,4,6,7,10,11,13,16,18,19,...) coincide with A026147 (for n>0).

Factors of denominators before cancellation (1,2,3,5,8,9,12,14,15,17,...) coincide with A181155 (for n>0).

REFERENCES

Jean-Paul Allouche and Jeffrey Shallit, The Ubiquitous Prouhet-Thue-Morse Sequence, in C. Ding, T. Helleseth, N. Niederreiter (eds.), Sequences and their Applications: Proceedings of SETA '98, Springer-Verlag, London, 1999, pp. 1-16.

Michael Trott, Exercises of The Mathematica GuideBook for Numerics, Chapter 2, p. 33.

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..12

Michael Trott, Mathematica Guidebooks, Sample Exercises Numerics p. 33.

Donald R. Woods and David Robbins and Gustaf Gripenberg, Solution to Problem E2692, American Mathematical Monthly, Vol. 86, No. 5 (May 1979), pp. 394-395.

FORMULA

f(n) = Product_{k=0..2^(n-1)-1} ((2k+1)/(2k+2))^((-1)^tm(k)), where tm(k) is the Thue-Morse sequence A010060.

EXAMPLE

f(3): 1*4*6*7/(2*3*5*8) = 7/10, hence a(3) = 7.

f(5): 1*4*6*7*10*11*13*16*18*19*21*24*25*28*30*31 / (2*3*5*8*9*12*14*15*17*20*22*23*26*27*29*32) = 144305 / 204102 = 0.707024..., hence a(5) = 144305.

Sequence of fractions f(n) begin: 1/1, 1/2, 2/3, 7/10, 286/405, 144305/204102, ...

MAPLE

g:= (i, j)-> `if`(j=0, i, g(i, j-1)/g(i+2^(j-1), j-1)):

a:= n-> numer(g(1, n)):

seq(a(n), n=0..10);  # Alois P. Heinz, Aug 08 2017

MATHEMATICA

f[1] = id[1]/id[2]; f[n_] := f[n] = f[n-1]/(f[n-1] /. id[k_] :> id[k + 2^(n-1)]); a[n_]:= f[n] /. id -> Identity // Numerator; Array[a, 8]

PROG

(Python)

from sympy.core.cache import cacheit

from sympy import numer

@cacheit

def g(i, j): return i if j==0 else g(i, j - 1)/g(i + 2**(j - 1), j - 1)

def a(n): return numer(g(1, n))

print map(a, range(11)) # Indranil Ghosh, Aug 09 2017, after Maple code

CROSSREFS

Cf. A010060, A026147, A094541 (supersequence of numerators), A094542 (supersequence of denominators), A181155, A290638 (denominators).

Sequence in context: A037067 A012987 A187603 * A260967 A128456 A137666

Adjacent sequences:  A290634 A290635 A290636 * A290638 A290639 A290640

KEYWORD

nonn

AUTHOR

Jean-Fran├žois Alcover, Aug 08 2017

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 2 03:22 EST 2020. Contains 338865 sequences. (Running on oeis4.)