login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A087699
Greater twin prime p such that 2^p-1 is composite.
1
43, 73, 103, 109, 139, 151, 181, 193, 199, 229, 241, 271, 283, 313, 349, 421, 433, 463, 523, 571, 601, 619, 643, 661, 811, 823, 829, 859, 883, 1021, 1033, 1051, 1063, 1093, 1153, 1231, 1291, 1303, 1321, 1429, 1453, 1483, 1489, 1609, 1621, 1669, 1699, 1723
OFFSET
0,1
COMMENTS
Look at all twin primes (p1, p2); if 2^p2 - 1 is composite print p2.
LINKS
MATHEMATICA
Transpose[Select[Partition[Prime[Range[300]], 2, 1], Last[#]-First[#] == 2&&!PrimeQ[2^Last[#]-1]&]][[2]] (* Harvey P. Dale, Oct 20 2013 *)
PROG
(PARI) twopm1(n) = { forprime(x=2, n, y=2^x-1; if(!isprime(y) && isprime(x-2), print1(x", ") ) ) }
CROSSREFS
Sequence in context: A141971 A144974 A144975 * A054807 A285017 A139932
KEYWORD
easy,nonn
AUTHOR
Cino Hilliard, Oct 25 2003
EXTENSIONS
Corrected and extended by Ray Chandler, Nov 07 2003
STATUS
approved