login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A285015
Primes of the form k * b^b - 1, with b > 1.
4
3, 7, 11, 19, 23, 31, 43, 47, 53, 59, 67, 71, 79, 83, 103, 107, 127, 131, 139, 151, 163, 167, 179, 191, 199, 211, 223, 227, 239, 251, 263, 269, 271, 283, 307, 311, 331, 347, 359, 367, 379, 383, 419, 431, 439, 443, 463, 467, 479, 487, 491, 499, 503, 523, 547
OFFSET
1,1
COMMENTS
This sequence has relative density 1 - Prod_p 1-1/(p^p-p) = 0.52098749404893... in the primes, hence a(n) ~ kn log n where k = 1.91943... is the reciprocal of this quantity. - Charles R Greathouse IV, May 12 2017
LINKS
EXAMPLE
a(1) = 1*(2^2)-1 = 3.
a(2) = 2*(2^2)-1 = 7.
a(9) = 2*(3^3)-1 = 53.
MAPLE
N:= 1000: # to get all terms <= N
bmax:= floor(ln(N+1)/LambertW(ln(N+1))):
sort(convert(select(isprime, {seq(seq(k*b^b-1, k=1..(N+1)/b^b), b=2..bmax)}), list)); # Robert Israel, May 11 2017
MATHEMATICA
Take[Select[Union@Flatten@Table[k b^b - 1, {b, 2, 20}, {k, 148}], PrimeQ], 55]
PROG
(PARI) upto(n)=my(l=List([3]), b=2, s=1); n++; while(b^b < n, c = b^b; forstep(i=2, n\c, s, if(isprime(i*c-1), listput(l, i*c-1))); s=3-s; b++); listsort(l, 1); l \\ David A. Corneth, May 11 2017
(PARI) is(n)=if(!isprime(n), return(0)); my(t); forprime(p=2, , t=p^p; if((n+1)%t==0, return(1)); if(t>=n, return(0))) \\ Charles R Greathouse IV, May 11 2017
CROSSREFS
Cf. A175768.
Sequence in context: A080978 A160216 A181516 * A002145 A002052 A369249
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, May 08 2017
STATUS
approved