The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A285016 Primes of the form p*b^b - 1, where p is a prime and b>1. 1
 7, 11, 19, 43, 53, 67, 163, 211, 283, 331, 523, 547, 691, 787, 907, 1051, 1123, 1171, 1279, 1531, 1723, 1867, 2011, 2083, 2251, 2347, 2371, 2467, 2707, 2731, 2803, 2971, 3187, 3307, 3547, 3643, 3907, 3931, 4051, 4243, 4363, 4603, 4651, 4723, 5107, 5227 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..2300 EXAMPLE a(1) = 2*(2^2)-1 = 7. a(2) = 3*(2^2)-1 = 11. a(3) = 5*(2^2)-1 = 19. a(4) = 11*(2^2)-1 = 43. MATHEMATICA nmax=10^4; pimax=PrimePi[nmax]; bmax=1; While[(bmax+1)^(bmax+1)<=nmax, bmax++]; Select[Union@Flatten@Table[Prime[pi] b^b-1, {b, 2, bmax}, {pi, pimax}], PrimeQ[#]&&#<=nmax&] PROG (PARI) is(n)=for(b=2, oo, my(B=b^b); if((n+1)%B==0 && isprime((n+1)/B), return(isprime(n))); if(2*B+1>n, return(0))) \\ Charles R Greathouse IV, Jun 16 2022 (PARI) list(lim)=my(v=List()); lim\=1; for(b=2, oo, my(p=2*b^b-1); if(p>lim, break); if(isprime(p), listput(v, p))); forstep(b=2, oo, 2, my(B=b^b); if(3*B-1>lim, break); forprime(q=3, (lim+1)\B, my(p=q*B-1); if(isprime(p), listput(v, p)))); Set(v) \\ Charles R Greathouse IV, Jun 16 2022 CROSSREFS Cf. A000312, A090866, A285015. Sequence in context: A165549 A055939 A154555 * A162857 A307965 A323109 Adjacent sequences: A285013 A285014 A285015 * A285017 A285018 A285019 KEYWORD nonn,easy AUTHOR Vincenzo Librandi, May 12 2017 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 23:46 EST 2022. Contains 358544 sequences. (Running on oeis4.)