The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A307965 a(n) is the least prime p = prime(k) > prime(n) such that A306530(k) = prime(n). 2
 7, 11, 19, 53, 43, 173, 67, 2477, 8803, 9173, 32323, 37123, 163, 74093, 170957, 360293, 679733, 2404147, 2004917, 69009533, 51599563, 155757067, 96295483, 146161723, 1408126003, 3519879677, 2050312613, 3341091163, 78864114883, 65315700413, 1728061733, 9447241877 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS This sequence is analogous to A000229, but for least prime quadratic residue modulo p. Note that a(n) is the least odd number m > prime(n) such that prime(n)^((m-1)/2) == 1 (mod m) and q^((m-1)/2) == -1 (mod m) for every prime q < prime(n). Such m is always an odd prime. LINKS Table of n, a(n) for n=1..32. MATHEMATICA f[n_] := Module[{p = Prime[n], q = 2}, While[JacobiSymbol[q, p] != 1, q = NextPrime[q]]; q]; a[n_] := Module[{p = Prime[n], k = n + 1}, While[f[k] != p, k++]; Prime[k]]; Array[a, 20] PROG (PARI) f(n) = my(i=1, p = prime(n)); while(kronecker(prime(i), p)! = 1, i++); prime(i); \\ A306530 a(n) = my(p=prime(n), iq = p+1, q=nextprime(iq)); while(f(iq)!= p, iq++); prime(iq); \\ Michel Marcus, May 12 2019 CROSSREFS Cf. A000229, A306530. Sequence in context: A154555 A285016 A162857 * A323109 A023267 A319224 Adjacent sequences: A307962 A307963 A307964 * A307966 A307967 A307968 KEYWORD nonn AUTHOR Amiram Eldar and Thomas Ordowski, May 08 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 20:55 EDT 2024. Contains 375144 sequences. (Running on oeis4.)