OFFSET
1,1
COMMENTS
The larger counterparts are in A307963.
If (m, n) is an amicable pair (A259180), then the pair (m*k, n*k) with k=rad(m*n) is a coreful amicable pair (rad(i)=A007947(i) is the squarefree kernel of i), and so are all the pairs (m*k*s, n*k*s) where s is a squarefree number with gcd(s, k) = 1. Proof: k = rad(m*n) = rad(m)*rad(n)/rad(gcd(m,n)), csigma(m*k) = csigma(m*rad(m)*j) where j = rad(n)/rad(gcd(m,n)) is squarefree and coprime to m*rad(m), so csigma(m*k) = j * csigma(m*rad(m)) = j * rad(m)* sigma(m) = rad(m)*rad(n)/rad(gcd(m,n)) * sigma(m) = rad(m)*rad(n)/rad(gcd(m,n)) * (n+m) = k *(n+m) = csigma(n*k).
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000
MATHEMATICA
f[p_, e_] := (p^(e+1)-1)/(p-1)-1; csigma[1]=1; csigma[n_] := Times @@ (f @@@ FactorInteger[n]); s={}; Do[m = csigma[n] - n; If[m > n && csigma[m] - m == n, AppendTo[s, n]], {n, 1, 10^8}]; s
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, May 08 2019
EXTENSIONS
Wrong terms corrected by Amiram Eldar, Dec 02 2019
STATUS
approved